Dado que los planetas son pequeños y brillan con luz reflejada, tienden a desvanecerse en el resplandor del sol local. Sin embargo, actualmente se están efectuando importantes esfuerzos para descubrir planetas formados enteramente alrededor de las estrellas cercanas. Dichos trabajos consisten en detectar cualquier disminución, por breve y débil que sea, de la luz de la estrella, al interponerse entre ella y el observador en la Tierra un planeta oscuro, o bien tratan de registrar leves fluctuaciones en el movimiento de la estrella al ser tirada, primero de un lado y luego del otro, por un compañero de órbita de otro modo invisible. De todas maneras, las técnicas de transporte espacial serán mucho más sensibles a dichos fenómenos. Un planeta joviano moviéndose alrededor de una estrella cercana es aproximadamente mil millones de veces más pálido que su sol; no obstante, una nueva generación de telescopios basados en la Tierra, capaces de compensar el centelleo en la atmósfera terrestre, podrán detectar planetas así en un futuro próximo, con tan sólo unas pocas horas de observación. Un planeta terrestre de una estrella vecina es incluso cien veces más pálido, pero ahora parece que naves espaciales, de bajo coste comparativamente hablando, podrían detectar otras Tierras por encima de la atmósfera de nuestro planeta. Ninguna de estas investigaciones ha tenido éxito hasta el momento, pero está claro que estamos a punto de ser capaces de detectar planetas, al menos del tamaño de Júpiter, alrededor de las estrellas más cercanas, si es que existen realmente.
Un descubrimiento reciente de extraordinaria importancia, y muy afortunado por lo casual, es el hallazgo de un sistema planetario auténtico alrededor de una estrella remota, a unos 1300 años luz de distancia, realizado mediante una técnica de lo más inesperada: el pulsar designado como B 1257 + 12 es una estrella de neutrones en rotación rápida, un sol increíblemente denso, un residuo de una estrella masiva que sufrió una explosión de supernova. Esta estrella gira, a un ritmo medido con impresionante precisión, una vez cada 0,0062185319388187 segundos. Dicho pulsar se mueve a diez mil revoluciones por minuto.
Las partículas cargadas cautivas en su intenso campo magnético generan ondas de radio que alcanzan la Tierra, de alrededor de 160 parpadeos por segundo. Cambios pequeños pero discernibles en la proporción de los destellos fueron interpretados experimentalmente, en 1991, por Alexander Wolszczan, actualmente en la Universidad Estatal de Pennsylvania, como un minúsculo movimiento reflejo del pulsar en respuesta a la presencia de planetas. En 1994, las anteriormente predichas interacciones gravitatorias mutuas de esos planetas fueron confirmadas por Wolszczan a partir de un estudio de medición del ritmo a nivel de microsegundos en el transcurso de años. La evidencia de que se trata realmente de nuevos planetas y no de temblores sobre la superficie de neutrones de la estrella (o algo así) es hoy aplastante o, tal como lo formula Wolszczan, «irrefutable»; un nuevo sistema solar ha sido «identificado sin ambigüedades». A diferencia de todas las técnicas restantes, el método de medición del ritmo de los pulsares hace que la detección de los planetas terrestres cercanos sea comparativamente más fácil, mientras que la de los planetas jovianos más distantes resulta más dificultosa.
El planeta C, unas 2,8 veces más masivo que la Tierra, completa una órbita alrededor del pulsar cada 98 días, a una distancia de 0,47 unidades astronómicas (UA) (La Tierra, por definición, se encuentra a una UA de su estrella, el Sol.); el planeta B, con una masa de cerca de 3,4 veces la de la Tierra, tiene un año de 67 días terrestres y está a 0,36 UA. Un mundo más pequeño, el planeta A, todavía más cercano a la estrella, con cerca de 0,015 masas de la Tierra, se encuentra a 0,19 UA. A grandes rasgos, el planeta B se halla aproximadamente a la distancia que separa a Mercurio de nuestro Sol; el planeta C se encuentra a medio camino entre las distancias de Mercurio y Venus; y en una posición interior a los dos se sitúa el planeta A, que tiene una masa cercana a la de la Luna y se halla aproximadamente a la mitad de la distancia entre Mercurio y nuestro Sol. Si estos planetas son residuos de un sistema planetario primitivo que, de alguna manera, sobrevivió a la explosión de supernova que produjo el pulsar, o si se formaron a partir del disco de acreción circunestelar resultante de la explosión de supernova, es algo que desconocemos. Pero, en cualquier caso, hemos aprendido que existen otras Tierras.
La energía que genera el B 1257 + 12 es de cerca de 4,7 veces la del Sol. Pero, a diferencia del Sol, mucha de esa energía no se canaliza en luz visible, sino en un potente huracán de partículas cargadas eléctricamente. Supongamos que dichas partículas chocan contra los planetas y los calientan. En ese caso, incluso un planeta a 1 UA soportaría en su superficie una temperatura de alrededor de 280 centigrados por encima del punto normal de ebullición del agua, una temperatura, en definitiva, más elevada que la de Venus.
Por lo tanto, estos planetas oscuros y tórridos no parecen habitables. No obstante puede haber otros, más allá del B 1257 + 12, que sí lo sean. (Existen algunas pistas que apuntan a por lo menos un mundo joviano exterior y más frío en el sistema del B 1257 +12.) Naturalmente, ni siquiera sabemos si esos mundos conservan sus atmósferas; tal vez toda atmósfera fue desmantelada en la explosión de supernova, si se remontan tan atrás. Pero sí parece que estamos detectando un sistema planetario reconocible. Probablemente, muchos más serán descubiertos en las próximas décadas, tanto alrededor de estrellas ordinarias del tipo del Sol como alrededor de enanas blancas, pulsares y otros estadios finales de la evolución estelar.
Con el tiempo dispondremos de una lista de sistemas planetarios, tal vez cada uno de ellos con planetas terrestres y jovianos, y quizá también nuevas clases de planetas. Examinaremos dichos mundos espectroscópicamente y con otros medios. Seguiremos buscando nuevas Tierras, así como la posible existencia de vida.
E
N NINGUNO DE LOS MUNDOS
del sistema solar exterior pudo el
Voyager
encontrar indicios de vida, y mucho menos de inteligencia. Sí había materia orgánica en abundancia —la materia de la vida, la premonición de vida, quizá— pero, por lo que pudo verse, ni un solo ser viviente. No había oxígeno en sus atmósferas, ni tampoco gases completamente fuera del equilibrio químico, como es el caso del metano en el oxígeno de la Tierra. Muchos de los mundos aparecían teñidos de sutiles colores, pero ninguno presentaba rasgos de absorción tan agudos y distintivos como el que provee la clorofila sobre la mayor parte de la faz de la Tierra. En muy pocos mundos fue capaz el
Voyager
de captar detalles con una resolución tan grande como supone un kilómetro de distancia. A ese nivel, ni siquiera habría detectado nuestra propia civilización tecnológica de haber sido ésta trasplantada al sistema solar exterior. Pero por lo que merece la pena, no encontramos formas regulares, ni geometrización, ni pasión por los círculos pequeños, los triángulos, los cuadrados o los rectángulos. No había constelaciones de puntos fijos de luz en los hemisferios nocturnos. No se hallaron indicios de civilización técnica alguna remodelando la superficie de ninguno de esos mundos.
Los planetas jovianos son prolíficos transmisores de ondas de radio, generadas en parte por las abundantes partículas cargadas cautivas y dirigidas en sus campos magnéticos, en parte por relámpagos y en parte por sus calientes interiores. No obstante, ninguna de esas emisiones reviste las características producidas por la vida inteligente o, al menos, ésa es la opinión de los expertos en la materia.
Claro está que nuestros razonamientos pueden ser obtusos. Puede que se nos esté escapando algo. Por ejemplo, hay un poco de anhídrido carbónico en la atmósfera de Titán que coloca su atmósfera de nitrógeno y metano fuera del equilibrio químico. Pienso que el CO
2
es debido a la lluvia constante de cometas que se precipitan sobre la atmósfera de Titán, aunque puede que no sea así. También cabe la posibilidad de que haya algo en su superficie que, inexplicablemente, genere CO
2
a pesar de todo ese metano.
Las superficies de Miranda y Tritón son distintas de cualquier otra cosa que conozcamos. Presentan vastos territorios en forma de galón y líneas rectas entrecruzadas, que sobrios geólogos planetarios llegaron a describir alguna vez maliciosamente como «autopistas». Creemos que comprendemos (apenas) esas formas del terreno en términos de imperfecciones y colisiones, pero naturalmente podemos estar equivocados.
Las manchas de materia orgánica de la superficie —que en ocasiones, como en Tritón, adoptan delicados matices— se atribuyen a las partículas cargadas eléctricamente, que producen reacciones químicas en los hielos de hidrocarburos simples, generando materiales orgánicos más complejos, aunque nada de eso tiene que ver con la intermediación de la vida. No obstante, también podemos estar equivocados.
Las complejas formas de parásitos, estallidos y silbidos de radio que recibimos de los cuatro planetas jovianos parecen explicables, de un modo general, por la física de plasma y la emisión térmica. (Todavía hoy hay muchos aspectos concretos que no se comprenden del todo.) Pero, naturalmente, es posible que estemos equivocados.
No hemos encontrado nada en docenas de mundos, y podemos afirmarlo con tanta claridad y contundencia como se manifestaron los signos de vida que detectó la nave
Galileo
en sus vuelos junto a la Tierra. La vida es una hipótesis de último recurso. Acudimos a ella cuando no existe otro modo de explicar lo que estamos percibiendo. Si tuviera que aventurar un juicio, diría que no hay vida en ningún otro mundo de los que hemos estudiado, exceptuando, claro está, el nuestro. Pero podría estar equivocado, y, verdadera o falsa, mi opinión se halla necesariamente restringida a este sistema solar. Tal vez en alguna nueva misión hallemos algo distinto, algo sorprendente, algo del todo inexplicable con las herramientas comunes de la ciencia planetaria. En ese caso, trémula y cautelosamente, nos volveremos hacia una explicación biológica. Sin embargo, por el momento, nada nos mueve a recurrir a ese camino. Hasta el día de hoy, la única vida en el sistema solar es la que procede de la Tierra. En los sistemas de Urano y Neptuno el único indicio de vida fue la propia nave
Voyager.
Cuando identifiquemos los planetas de otras estrellas, en el momento en que descubramos otros mundos, aproximadamente del tamaño y la masa de la Tierra, los escudriñaremos a fondo en busca de indicios de vida. Puede que en algún mundo que nunca hayamos fotografiado se detecte una densa atmósfera de oxígeno. Al igual que en la Tierra, ello puede constituir en sí una señal de la presencia de vida. Una atmósfera de oxígeno con cantidades apreciables de metano sería un síntoma de vida casi seguro, lo mismo que la captación de emisiones de radio moduladas. Algún día, gracias a observaciones de nuestro sistema planetario o de otro, la noticia del hallazgo de vida en otro lugar nos sorprenderá a la hora del desayuno.
L
AS NAVES ESPACIALES
V
OYAGER
viajan con destino a las estrellas. Se hallan en trayectorias de escape del sistema solar, surcando el espacio a razón de casi un millón seiscientos mil kilómetros diarios. Los campos gravitatorios de Júpiter, Saturno, Urano y Neptuno las han impulsado a velocidades tan altas que han roto los vínculos que en otro tiempo los unían con el Sol.
¿Han abandonado ya el sistema solar? La respuesta depende mucho de cómo definamos la frontera de los dominios del Sol. Si ésta se sitúa en la órbita del planeta de tamaño regular más exterior, entonces los
Voyager
ya la han atravesado hace tiempo; probablemente no existan Neptunos todavía por descubrir. Si nos referimos al planeta más exterior, puede que haya otros planetas —similares quizá a Tritón— mucho más allá de Neptuno y Plutón; de ser así, el
Voyager 1
y el
Voyager 2
se encuentran todavía dentro de los confines del sistema solar. En caso de que definamos los límites exteriores del sistema solar como la heliopausa —donde las partículas y campos magnéticos interplanetarios son reemplazados por sus contrapartidas interestelares—, entonces ninguno de los
Voyager
ha abandonado todavía el sistema solar, si bien puede que lo hagan en el plazo de unas pocas décadas.
[20]
Pero si su definición del borde del sistema solar corresponde a la distancia en la cual nuestra estrella no puede ya mantener mundos en órbita a su alrededor, en ese caso los
Voyager
no dejarán el sistema solar durante cientos de siglos.
Débilmente afectada por la gravedad del Sol, que se propaga en el cielo en todas direcciones, se encuentra esa inmensa horda de un billón de cometas o más, la Nube de Oort. Las dos naves espaciales concluirán su paso a través de la Nube de Oort aproximadamente dentro de veinte mil años. Luego, por fin, completando su largo adiós al sistema solar, liberándose del yugo gravitatorio que los había mantenido encadenados al Sol, los
Voyager
llegarán al mar abierto del espacio interestelar. Solamente entonces dará comienzo la Fase Dos de su misión.
Con sus transmisores de radio fallecidos mucho tiempo atrás, las naves deambularán durante incontables años por la tranquila y fría negrura del espacio interestelar, donde no hay prácticamente nada que pueda erosionarlas. Una vez abandonado el sistema solar, permanecerán intactas durante mil millones de años o más, circunnavegando el centro de la galaxia Vía Láctea.
No sabemos si existen en la Vía Láctea otras civilizaciones que naveguen por el espacio. Si las hay, no sabemos cuántas son, ni mucho menos dónde se encuentran. Pero existe al menos una posibilidad de que, en algún momento del futuro remoto, uno de los
Voyager
sea interceptado y examinado por alguna nave extraterrestre.
En consecuencia, cuando los
Voyager
partieron de la Tierra con rumbo a los planetas y las estrellas, se llevaron consigo un disco fonográfico recubierto de oro, protegido por una reluciente funda de oro, que contenía entre otras cosas; saludos en 59 idiomas humanos y en un lenguaje de ballenas; un ensayo evolutivo en audio, de doce minutos de duración, sobre «los sonidos de la Tierra», que incluye un beso, el llanto de un bebé y el registro de un electroencefalograma con las reflexiones de una joven enamorada; 116 imágenes codificadas sobre nuestra ciencia, nuestra civilización y nosotros mismos; y también noventa minutos de la mejor música del mundo —de Oriente y Occidente, clásica y folk, incluyendo un canto nocturno de los navajos, un
shakuhachi
japonés, una canción de iniciación de una niña pigmeo, una canción de boda peruana, una composición china de tres mil años de antigüedad para quin titulada
Corrientes que fluyen
, Bach, Beethoven, Mozart, Stravinsky, Louis Armstrong, Blind Willie Johnson y el
Johnny B. Goode
de Chuck Berry.