Con nuestro nerviosismo habitual, con nuestra costumbre de dar siempre dos pasos adelante y uno atrás, nos dirigimos de todos modos hacia la unificación. Poderosas influencias emanan de la tecnología del transporte y de las comunicaciones, de la interdependiente economía internacional, así como de la crisis global del medio ambiente. El peligro de impacto solamente acelera el ritmo.
Al final, con cautela y escrupuloso cuidado de no intentar nada con asteroides que pudiera causar inadvertidamente una catástrofe en la Tierra, me imagino que iremos aprendiendo cómo modificar las órbitas de pequeños mundos no metálicos, de menos de cien metros de diámetro. Empezaremos con explosiones menores y, poco a poco, iremos incrementando su intensidad. Iremos ganando experiencia en la modificación de órbitas de cometas y asteroides de diferente composición y solidez. Intentaremos determinar cuáles pueden ser movidos y cuáles no. Tal vez hacia el siglo XXII seremos capaces de mover mundos pequeños por el sistema solar, empleando
(véase el capítulo siguiente)
no explosiones nucleares sino motores de fusión nuclear o sus equivalentes. Insertaremos en la órbita terrestre pequeños asteroides hechos de metales industriales y preciosos. Paulatinamente desarrollaremos una tecnología defensiva para desviar un asteroide o cometa de grandes proporciones que pudiera golpear la Tierra en un futuro previsible, al tiempo que, con meticuloso cuidado, vamos construyendo capas protectoras contra su uso indebido.
Dado que el peligro de la utilización incorrecta de la tecnología de desvío de asteroides parece mucho mayor que el de un impacto inminente, podemos permitirnos el lujo de invertir décadas, y probablemente siglos, en tomar precauciones y reformar las instituciones políticas. Si jugamos bien nuestras cartas y la suerte nos acompaña, podemos marcar el ritmo de lo que hacemos ahí arriba a través de los progresos que vamos efectuando aquí abajo. Ambas cosas se hallan, en cualquier caso, profundamente conectadas.
La amenaza que representan los asteroides nos obliga a pasar a la acción. A la larga deberemos establecer una formidable presencia humana por todo lo largo y ancho del sistema solar interior. En un tema de tanta importancia no creo que nos contentemos con métodos de disuasión exclusivamente robóticos. Y, para llevarlo a cabo de forma segura, estamos obligados a efectuar cambios en nuestros sistemas políticos e internacionales. Si bien buena parte de nuestro futuro se vislumbra bastante encapotado, esta conclusión parece algo más robusta y es independiente de los caprichos de las instituciones humanas.
A largo plazo, aunque no seamos los descendientes de nómadas profesionales ni nos sintamos inspirados por la pasión exploratoria, algunos de nosotros tendremos que abandonar la Tierra, simplemente para garantizar la supervivencia de todos. Y, una vez nos encontremos ahí fuera, necesitaremos bases, infraestructuras. No habrá de transcurrir mucho tiempo para que algunos de nosotros vivamos en hábitats artificiales en otros mundos. Este es uno de los dos argumentos que faltaban —omitido en nuestra discusión de las misiones a Marte— en favor de la presencia humana en el espacio.
O
TROS SISTEMAS PLANETARIOS
deben hacer frente a su propia amenaza de impactos, ya que los mundos primordiales pequeños, de los cuales se consideran restos los cometas y asteroides, constituyen la materia a partir de la cual, también allí, se forman los planetas. Una vez formados dejan tras de sí muchos de esos corpúsculos celestes. En la Tierra, el plazo medio entre impactos que amenacen nuestra civilización es quizá de unos doscientos mil años, veinte veces su edad. En cambio, las civilizaciones extraterrestres, si es que existen, tendrán tiempos de espera muy diferentes, dependiendo éstos de factores como las características físicas y químicas del planeta y su biosfera, la naturaleza biológica y social de la civilización que en él haya florecido, así como la tasa de colisiones en sí. Los planetas con presiones atmosféricas más elevadas estarán, en cierto modo, protegidos de los cuerpos de impacto más grandes, aunque la presión tampoco puede ser mucho más elevada sin que el calentamiento por efecto invernadero y otras consecuencias hagan improbable la vida. Si la gravedad es mucho menor que la de la Tierra, los impactores provocarán colisiones mucho menos enérgicas y el peligro se verá reducido, si bien no puede reducirse mucho sin que la atmósfera escape al espacio.
La tasa de impactos en otros sistemas planetarios permanece incierta. Nuestro sistema contiene dos grandes poblaciones de pequeños cuerpos que alimentan la presencia de potenciales impactores en órbitas que cruzan la de la Tierra. Tanto la existencia de las poblaciones de origen como los mecanismos que mantienen la tasa de colisiones dependen de cómo están distribuidos los mundos. Por ejemplo, nuestra Nube de Oort parece haberse poblado por eyecciones gravitatorias de fragmentos de mundo helados procedentes de las proximidades de Urano y Neptuno. En caso de que no existan planetas que jueguen el papel de Urano y Neptuno en sistemas que, por lo demás, son como el nuestro, sus Nubes de Oort pueden estar mucho menos pobladas. Las estrellas en cúmulos estelares abiertos o globulares, las que se encuentran en sistemas dobles o múltiples, las que ocupan un lugar más cercano al centro de la galaxia o las que experimentan encuentros más frecuentes con las nubes moleculares gigantes en el espacio interestelar pueden tener, todas ellas, unos flujos de impacto más elevados en sus planetas terrestres. El flujo cometario en la Tierra podría ser cientos o miles de veces mayor si nunca se hubiera formado el planeta Júpiter, según cálculos de George Wetherill, de la Institución Carnegie de Washington. En sistemas que no poseen planetas como Júpiter, el escudo gravitacional contra cometas es reducido y los impactos amenazadores de la civilización mucho más frecuentes.
En cierta medida, los flujos elevados de objetos interplanetarios pueden incrementar el ritmo de la evolución de las especies, como en el caso de los mamíferos, que proliferaron y se diversificaron tras la colisión del cretáceo-terciario, que barrió a los dinosaurios de la faz de la Tierra. Pero debe de haber un punto de clara disminución del rendimiento: está claro que llega un momento en que el flujo es demasiado elevado para la continuación de cualquier tipo de civilización.
Una consecuencia de esta línea de argumentación es que, aunque las civilizaciones estuvieran surgiendo de forma habitual sobre los planetas por toda la galaxia, habrá muy pocas que sean a la vez duraderas y no tecnológicas. Dado que los peligros que plantean los asteroides y cometas deben afectar a los planetas habitados de toda la galaxia, los seres inteligentes de todas partes se verán obligados a unificar políticamente sus mundos, a abandonar sus planetas y a mover los mundos pequeños que los rodean. Al final habrán de elegir, como nosotros, entre los vuelos espaciales o la extinción.
Capítulo
¿Quién puede negar que, en cierto modo, el hombre también sería capaz de fabricar Cielos si tuviera a su alcance los instrumentos y el material celestial?
M
ARSILIO
F
ONO
, «El alma del hombre» (aprox. 1474)
E
n mitad de la Segunda Guerra Mundial, un joven escritor americano llamado Jack Williamson imaginó un sistema solar habitado. Según su visión, en el siglo XXII Venus habría sido colonizada por China,
[36]
Japón e Indonesia; Marte por Alemania; y las lunas de Júpiter, por Rusia. Las poblaciones de habla inglesa, la lengua en la que escribía Williamson, quedarían confinadas en los asteroides y, naturalmente, en la Tierra.
La historia, publicada en Astounding Science Fiction («Asombrosa ciencia ficción») en julio de 1942, se tituló
Collision Orbit
(«Órbita de colisión») y fue escrita bajo el seudónimo de Will Stewart. El argumento giraba en torno a la inminente colisión de un asteroide inhabitado con uno colonizado y presentaba la búsqueda de un método para alterar las trayectorias de los mundos de pequeñas dimensiones. Si bien nadie en la Tierra corría peligro, ésta puede haber sido la primera visión —exceptuando algunas tiras de cómics publicadas en periódicos— de las colisiones de asteroides como amenaza para los seres humanos. (El peligro principal hasta entonces radicaba en los impactos de
cometas
contra la Tierra.)
Los entornos ambientales de Marte y Venus apenas se conocían a principios de los años cuarenta; todavía se suponía que los seres humanos podrían vivir allí sin necesidad de sofisticados equipos. Pero los asteroides eran harina de otro costal. Ya entonces era de sobra conocido que los asteroides eran mundos pequeños, áridos y asfixiantes. Si se pretendía habitarlos, sobre todo por gran número de personas, esos pequeños mundos deberían ser preparados de alguna manera.
En
Collision Orbit,
Williamson retrata a un grupo de «ingenieros espaciales» capaces de hacer habitables esos inhóspitos lugares. Acuñando un término especial, Williamson denominó «terraformación» al proceso de metamorfosis necesario para conseguir un mundo similar a la Tierra. El sabía que la baja gravedad en un asteroide significa que cualquier atmósfera allí generada o transportada escaparía rápidamente al espacio. Por ello, su tecnología clave para la «terraformación» era la «paragravedad», una gravedad artificial que lograría conservar una atmósfera densa.
Por cuanto hoy podemos decir, la paragravedad constituye una imposibilidad física. Pero podemos imaginar hábitats transparentes en forma de cúpula sobre la superficie de los asteroides, tal como sugirió Konstantin Tsiolkovsky, o bien comunidades establecidas en los interiores de esos cuerpos celestes, según propuso en los años veinte el científico británico J. D. Bernal. Al ser los asteroides de tamaño reducido y sus gravedades tan bajas, incluso masivas construcciones subterráneas podrían resultar comparativamente fáciles de crear. Si se excavara un túnel que atravesara el asteroide de parte a parte, se podría entrar por un extremo y salir por el otro al cabo de 45 minutos, oscilando indefinidamente arriba y abajo a lo largo de todo el diámetro de este mundo. En el interior del tipo de asteroide que nos conviene, el carbónico, pueden encontrarse los materiales apropiados para fabricar construcciones de piedra, metal y plástico, además de agua abundante, en definitiva, todo lo necesario para construir un sistema ecológico cerrado bajo tierra, un jardín subterráneo. Su ejecución requeriría dar un significativo paso más allá de lo que hoy tenemos, pero, a diferencia de la «paragravedad», la idea no contiene elementos cuyo desarrollo parezca imposible. Todos ellos pueden encontrarse en la tecnología contemporánea. Si tuviéramos motivos suficientes, un considerable número de seres humanos podría estar viviendo sobre (o dentro de) asteroides hacia el siglo XXII.
Naturalmente necesitarían una fuente de energía no sólo para mantenerse, sino también, como sugirió Bernal, para mover sus hogares asteroidales de un lugar a otro. (No parece que medie un paso tan grande entre la alteración por explosivos de las órbitas de asteroides y un método más suave de propulsión para uno o dos siglos después.) Si se generara una atmósfera de oxígeno mediante agua fijada químicamente, entonces podría quemarse materia orgánica para conseguir energía, como la obtenida actualmente en la Tierra al quemar combustibles fósiles. También podría considerarse la opción de la energía solar, aunque en el caso de los asteroides del cinturón principal la intensidad de la luz solar
alcanza
solamente alrededor de un diez por ciento de la que disfrutamos en la Tierra. Aun así, podríamos imaginar amplios campos de paneles solares cubriendo las superficies de los asteroides habitados y convirtiendo la luz solar en electricidad. La tecnología fotovoltaica se emplea habitualmente en las naves espaciales que orbitan la Tierra y, en la actualidad, se está incrementando su uso sobre la superficie terrestre. Pero mientras esa energía parece suficiente para calentar y alumbrar a estos descendientes nuestros, no bastaría para modificar las órbitas de asteroides.
Por ello, Williamson propuso que se empleara antimateria. La antimateria es igual que la materia normal, pero presenta una diferencia significativa. Consideremos, por ejemplo, el caso del hidrógeno: un átomo normal de hidrógeno se compone de un protón cargado positivamente en el interior y un electrón cargado negativamente en el exterior. Un átomo de antihidrógeno se compone, en cambio, de un protón cargado negativamente en el interior y un electrón cargado positivamente (también llamado positrón) en el exterior. Los protones, sea cual sea el signo de sus cargas, tienen la misma masa al igual que los electrones. Las partículas con cargas opuestas se atraen. Un átomo de hidrógeno y un átomo de antihidrógeno son estables, pues en ambos casos las cargas eléctricas positiva y negativa mantienen el equilibrio.
La antimateria no es una construcción hipotética, producto de las ardientes meditaciones de los autores de ciencia ficción o de los físicos teóricos. La antimateria existe. Los físicos la consiguen en aceleradores nucleares; puede encontrarse también en rayos cósmicos altamente energéticos. Pero entonces, ¿por qué no se oye hablar más de ella? ¿Por qué nadie nos ha tendido un trozo de antimateria para que podamos inspeccionarla? Pues porque la materia y la antimateria se aniquilan violentamente una a otra al entrar en contacto, desapareciendo en un intenso estallido de rayos gamma. No podemos decir si una cosa está hecha de materia o de antimateria solamente con mirarla. Las propiedades espectroscópicas, por ejemplo, del hidrógeno y del antihidrógeno son idénticas.