Read The Design of Everyday Things Online
Authors: Don Norman
Creeping featurism is the tendency to add to the number of features of a product, often extending the number beyond all reason. There is no way that a product can remain usable and understandable by the time it has all of those special-purpose features that have been added in over time.
In her book
Different
, Harvard professor
Youngme Moon argues that it is this attempt to match the competition that causes all products to be the same. When companies try to increase sales by matching every feature of their competitors, they end up hurting themselves. After all, when products from two companies match
feature by feature, there is no longer any reason for a customer to prefer one over another. This is competition-driven design. Unfortunately, the mind-set of matching the competitor's list of features pervades many organizations. Even if the first versions of a product are well done, human-centered, and focused upon real needs, it is the rare organization that is content to let a good product stay untouched.
FIGURE 7.1.
  Â
Featuritis Strikes Lego.
Figure A
shows the original Lego Motorcycle available in 1988 when I used it in the first edition of this book (on the left), next to the 2013 version (on the right). The old version had only fifteen pieces. No manual was needed to put it together. For the new version, the box proudly proclaims “29 pieces.” I could put the original version together without instructions.
Figure B
shows how far I got with the new version before I gave up and had to consult the instruction sheet. Why did Lego believe it had to change the motorcycle? Perhaps because featuritis struck real police motorcycles, causing them to increase in size and complexity and Lego felt that its toy needed to match the world. (Photographs by the author.)
Most companies compare features with their competition to determine where they are weak, so they can strengthen those areas. Wrong, argues Moon. A better strategy is to concentrate on areas where they are stronger and to strengthen them even more. Then focus all marketing and advertisements to point out the strong points. This causes the product to stand out from the mindless herd. As for the weaknesses, ignore the irrelevant ones, says Moon. The lesson is simple: don't follow blindly; focus on strengths, not weaknesses. If the product has real strengths, it can afford to just be “good enough” in the other areas.
Good design requires stepping back from competitive pressures and ensuring that the entire product be consistent, coherent, and
understandable. This stance requires the leadership of the company to withstand the marketing forces that keep begging to add this feature or that, each thought to be essential for some market segment. The best products come from ignoring these competing voices and instead focusing on the true needs of the people who use the product.
Jeff Bezos, the founder and CEO of
Amazon.com
, calls his approach “customer obsessed.” Everything is focused upon the requirements of Amazon's customers. The competition is ignored, the traditional marketing requirements are ignored. The focus is on simple, customer-driven questions: what do the customers want; how can their needs best be satisfied; what can be done better to enhance customer service and customer value? Focus on the customer, Bezos argues, and the rest takes care of itself. Many companies claim to aspire to this philosophy, but few are able to follow it. Usually it is only possible where the head of the company, the CEO, is also the founder. Once the company passes control to others, especially those who follow the traditional MBA dictum of putting profit above customer concerns, the story goes downhill. Profits may indeed increase in the short term, but eventually the product quality deteriorates to the point where customers desert. Quality only comes about by continual focus on, and attention to, the people who matter: customers.
Today, we have new requirements. We now need to type on small, portable devices that don't have room for a full keyboard. Touch-and gesture-sensitive screens allow a new form of typing. We can bypass typing altogether through handwriting recognition and speech understanding.
Consider the four products shown in
Figure 7.2.
Their appearance and methods of operations changed radically in their century of existence. Early telephones, such as the one in
Figure 7.2A
, did not have keyboards: a human operator intervened to make the connections. Even when operators were first replaced by automatic switching systems, the “keyboard” was a rotary dial with ten holes,
one for each digit. When the dial was replaced with pushbutton keys, it suffered a slight case of featuritis: the ten positions of the dial were replaced with twelve keys: the ten digits plus * and #.
FIGURE 7.2.
  Â
100 Years of Telephones and Keyboards.
Figures A
and
B
show the change in the telephone from the Western Electric crank telephone of the 1910s, where rotating the crank on the right generated a signal alerting the operator, to the phone of the 2010s. They seem to have nothing in common.
Figures C
and
D
contrast a keyboard of the 1910s with one from the 2010s. The keyboards are still laid out in the same way, but the first requires physical depression of each key; the second, a quick tracing of a finger over the relevant letters (the image shows the word
many
being entered). Credits: A, B, and C: photographs by the author; objects in A and C courtesy of the Museum of American Heritage, Palo Alto, California. D shows the “Swype” keyboard from Nuance. Image being used courtesy of Nuance Communications, Inc.
But much more interesting is the merger of devices. The human computer gave rise to laptops, small portable computers. The telephone moved to small, portable cellular phones (called mobiles in much of the world). Smart phones had large, touch-sensitive screens, operated by gesture. Soon computers merged into tablets, as did cell phones. Cameras merged with cell phones. Today, talking, video conferences, writing, photography (both still and video), and collaborative interaction of all sorts are increasingly
being done by one single device, available with a large variety of screen sizes, computational power, and portability. It doesn't make sense to call them computers, phones, or cameras: we need a new name. Let's call them “smart screens.” In the twenty-second century, will we still have phones? I predict that although we will still talk with one another over a distance, we will not have any device called a telephone.
As the pressures for larger screens forced the demise of physical keyboards (despite the attempt to make tiny keyboards, operated with single fingers or thumbs), the keyboards were displayed on the screen whenever needed, each letter tapped one at a time. This is slow, even when the system tries to predict the word being typed so that keying can stop as soon as the correct word shows up. Several systems were soon developed that allowed the finger or stylus to trace a path among the letters of the word:
word-gesture systems. The gestures were sufficiently different from one another that it wasn't even necessary to touch all the lettersâit only mattered that the pattern generated by the approximation to the correct path was close enough to the desired one. This turns out to be a fast and easy way to type (
Figure 7.2D
).
With gesture-based systems, a major rethinking is possible. Why keep the letters in the same QWERTY arrangement? The pattern generation would be even faster if letters were rearranged to maximize speed when using a single finger or stylus to trace out the letters. Good idea, but when one of the pioneers in developing this technique, Shumin Zhai, then at IBM, tried it, he ran into the legacy problem. People knew QWERTY and balked at having to learn a different organization. Today, the word-gesture method of typing is widely used, but with QWERTY keyboards (as in
Figure 7.2D
).
Technology changes the way we do things, but fundamental needs remain unchanged. The need for getting thoughts written down, for telling stories, doing critical reviews, or writing fiction and nonfiction will remain. Some will be written using traditional keyboards, even on new technological devices, because the keyboard still remains the fastest way to enter words into a system,
whether it be paper or electronic, physical or virtual. Some people will prefer to speak their ideas, dictating them. But spoken words are still likely to be turned into printed words (even if the print is simply on a display device), because reading is far faster and superior to listening. Reading can be done quickly: it is possible to read around three hundred words per minute and to skim, jumping ahead and back, effectively acquiring information at rates in the thousands of words per minute. Listening is slow and serial, usually at around sixty words per minute, and although this rate can be doubled or tripled with speech compression technologies and training, it is still slower than reading and not easy to skim. But the new media and new technologies will supplement the old, so that writing will no longer dominate as much as it did in the past, when it was the only medium widely available. Now that anyone can type and dictate, take photographs and videos, draw animated scenes, and creatively produce experiences that in the twentieth century required huge amounts of technology and large crews of specialized workers, the types of devices that allow us to do these tasks and the ways they are controlled will proliferate.