The Design of Everyday Things (44 page)

BOOK: The Design of Everyday Things
7.26Mb size Format: txt, pdf, ePub
ads

Each proposal is debated at the standards committee meeting where it is presented, then taken back to the sponsoring organization—which is sometimes a company, sometimes a professional society—where objections and counter-objections are collected. Then the standards committee meets again to discuss the objections. And again and again and again. Any company that is already marketing a product that meets the proposed standard will have a huge economic advantage, and the debates are therefore often affected as much by the economics and politics of the issues as by real technological substance. The process is almost guaranteed to take five years, and quite often longer.

The resulting standard is usually a compromise among the various competing positions, oftentimes an inferior compromise. Sometimes the answer is to agree on several incompatible standards. Witness the existence of both metric and English units; of left-hand- and right-hand-drive automobiles. There are several international standards for the voltages and frequencies of electricity, and several different kinds of electrical plugs and sockets—which cannot be interchanged.

WHY STANDARDS ARE NECESSARY: A SIMPLE ILLUSTRATION

With all these difficulties and with the continual advances in technology, are standards really necessary? Yes, they are. Take the everyday clock. It's standardized. Consider how much trouble you would have telling time with a backward clock, where the hands revolved “counterclockwise.” A few such clocks exist, primarily as humorous conversation pieces. When a clock truly violates standards, such as the one in
Figure 6.4
on the previous page, it is difficult to determine what time is being displayed. Why? The logic behind the time display is identical to that of conventional clocks: there are only two differences—the hands rotate in the opposite direction (counterclockwise) and the location of “12,” usually at the top, has been moved. This clock is just as logical as the standard one. It bothers us because we have standardized on a different scheme, on the very definition of the term
clockwise
. Without such standardization, clock reading would be more difficult: you'd always have to figure out the mapping.

A STANDARD THAT TOOK SO LONG, TECHNOLOGY OVERRAN IT

I myself participated at the very end of the incredibly long, complex political process of establishing the US standards for high-definition television. In the 1970s, the Japanese developed a national television system that had much higher resolution than the standards then in use: they called it “high-definition television.”

In 1995, two decades later, the television industry in the United States proposed its own high-definition TV standard (HDTV) to the Federal Communications Commission (FCC). But the computer industry pointed out that the proposals were not compatible with the way that computers displayed images, so the FCC objected to the proposed standards. Apple mobilized other members of the industry and, as vice president of advanced technology, I was selected to be the spokesperson for Apple. (In the following description, ignore the jargon—it doesn't matter.) The TV industry proposed a
wide variety of permissible formats, including ones with rectangular pixels and interlaced scan. Because of the technical limitations in the 1990s, it was suggested that the highest-quality picture have 1,080 interlaced lines (1080i). We wanted only progressive scan, so we insisted upon 720 lines, progressively displayed (720p), arguing that the progressive nature of the scan made up for the lesser number of lines.

The battle was heated. The FCC told all the competing parties to lock themselves into a room and not to come out until they had reached agreement. As a result, I spent many hours in lawyers' offices. We ended up with a crazy agreement that recognized multiple variations of the standard, with resolutions of 480i and 480p (called
standard definition
), 720p and 1080i (called
high-definition
), and two different aspect ratios for the screens (the ratio of width to height), 4:3 (= 1.3)—the old standard—and 16:9 (= 1.8)—the new standard. In addition, a large number of frame rates were supported (basically, how many times per second the image was transmitted). Yes, it was a standard, or more accurately a large number of standards. In fact, one of the allowed methods of transmission was to use any method (as long as it carried its own specifications along with the signal). It was a mess, but we did reach agreement. After the standard was made official in 1996, it took roughly ten more years for HDTV to become accepted, helped, finally, by a new generation of television displays that were large, thin, and inexpensive. The whole process took roughly thirty-five years from the first broadcasts by the Japanese.

Was it worth the fight? Yes and no. In the thirty-five years that it took to reach the standard, the technology continued to evolve, so the resulting standard was far superior to the first one proposed so many years before. Moreover, the HDTV of today is a huge improvement over what we had before (now called “standard definition”). But the minutiae of details that were the focus of the fight between the computer and TV companies was silly. My technical experts continually tried to demonstrate to me the superiority of 720p images over 1080i, but it took me hours of viewing special
scenes under expert guidance to see the deficiencies of the interlaced images (the differences only show up with complex moving images). So why did we care?

Television displays and compression techniques have improved so much that interlacing is no longer needed. Images at 1080p, once thought to be impossible, are now commonplace. Sophisticated algorithms and high-speed processors make it possible to transform one standard into another; even rectangular pixels are no longer a problem.

As I write these words, the main problem is the discrepancy in aspect ratios. Movies come in many different aspect ratios (none of them the new standard) so when TV screens show movies, they either have to cut off part of the image or leave parts of the screen black. Why was the HDTV aspect ratio set at 16:9 (or 1.8) if no movies used that ratio? Because engineers liked it: square the old aspect ratio of 4:3 and you get the new one, 16:9.

Today we are about to embark on yet another standards fight over TV. First, there is three-dimensional TV: 3-D. Then there are proposals for ultra-high definition: 2,160 lines (and a doubling of the horizontal resolution as well): four times the resolution of our best TV today (1080p). One company wants eight times the resolution, and one is proposing an aspect ratio of 21:9 (= 2.3). I have seen these images and they are marvelous, although they only matter with large screens (at least 60 inches, or 1.5 meters, in diagonal length), and when the viewer is close to the display.

Standards can take so long to be established that by the time they do come into wide practice, they can be irrelevant. Nonetheless, standards are necessary. They simplify our lives and make it possible for different brands of equipment to work together in harmony.

A STANDARD THAT NEVER CAUGHT ON: DIGITAL TIME

Standardize and you simplify lives: everyone learns the system only once. But don't standardize too soon; you may be locked into a primitive technology, or you may have introduced rules that turn out to be grossly inefficient, even error-inducing. Standardize too
late, and there may already be so many ways of doing things that no international standard can be agreed on. If there is agreement on an old-fashioned technology, it may be too expensive for everyone to change to the new standard. The metric system is a good example: it is a far simpler and more usable scheme for representing distance, weight, volume, and temperature than the older English system of feet, pounds, seconds, and degrees on the Fahrenheit scale. But industrial nations with a heavy commitment to the old measurement standard claim they cannot afford the massive costs and confusion of conversion. So we are stuck with two standards, at least for a few more decades.

Would you consider changing how we specify time? The current system is arbitrary. The day is divided into twenty-four rather arbitrary but standard units—hours. But we tell time in units of twelve, not twenty-four, so there have to be two cycles of twelve hours each, plus the special convention of a.m. and p.m. so we know which cycle we are talking about. Then we divide each hour into sixty minutes and each minute into sixty seconds.

What if we switched to metric divisions: seconds divided into tenths, milliseconds, and microseconds? We would have days, millidays, and microdays. There would have to be a new hour, minute, and second: call them the digital hour, the digital minute, and the digital second. It would be easy: ten digital hours to the day, one hundred digital minutes to the digital hour, one hundred digital seconds to the digital minute.

Each digital hour would last exactly 2.4 times an old hour: 144 old minutes. So the old one-hour period of the schoolroom or television program would be replaced with a half-digital hour period, or 50 digital minutes—only 20 percent longer than the current hour. We could adapt to the differences in durations with relative ease.

What do I think of it? I much prefer it. After all, the decimal system, the basis of most of the world's use of numbers and arithmetic, uses base 10 arithmetic and, as a result, arithmetic operations are much simpler in the metric system. Many societies have used other systems, 12 and 60 being common. Hence twelve for the
number of items in a dozen, inches in a foot, hours in a day, and months in a year; sixty for the number of seconds in a minute, seconds in a degree, and minutes in an hour.

The French proposed that time be made into a decimal system in 1792, during the French Revolution, when the major shift to the metric system took place. The metric system for weights and lengths took hold, but not for time. Decimal time was used long enough for decimal clocks to be manufactured, but it eventually was discarded. Too bad. It is very difficult to change well-established habits. We still use the QWERTY keyboard, and the United States still measures things in inches and feet, yards and miles, Fahrenheit, ounces, and pounds. The world still measures time in units of 12 and 60, and divides the circle into 360 degrees.

In 1998, Swatch, the Swiss watch company, made its own attempt to introduce decimal time through what it called
“Swatch International Time.” Swatch divided the day into 1,000 “.beats,” each .beat being slightly less than 90 seconds (each .beat corresponds to one digital minute). This system did not use time zones, so people the world over would be in synchrony with their watches. This does not simplify the problem of synchronizing scheduled conversations, however, because it would be difficult to get the sun to behave properly. People would still wish to wake up around sunrise, and this would occur at different Swatch times around the world. As a result, even though people would have their watches synchronized, it would still be necessary to know when they woke up, ate, went to and from work, and went to sleep, and these times would vary around the world. It isn't clear whether Swatch was serious with its proposal or whether it was one huge advertising stunt. After a few years of publicity, during which the company manufactured digital watches that told the time in .beats, it all fizzled away.

Speaking of standardization, Swatch called its basic time unit a “.beat” with the first character being a period. This nonstandard spelling wreaks havoc on spelling correction systems that aren't set up to handle words that begin with punctuation marks.

Deliberately Making Things Difficult

          
How can good design (design that is usable and understandable) be balanced with the need for “secrecy” or privacy, or protection? That is, some applications of design involve areas that are sensitive and necessitate strict control over who uses and understands them. Perhaps we don't want any user-in-the-street to understand enough of a system to compromise its security. Couldn't it be argued that some things shouldn't be designed well? Can't things be left cryptic, so that only those who have clearance, extended education, or whatever, can make use of the system? Sure, we have passwords, keys, and other types of security checks, but this can become wearisome for the privileged user. It appears that if good design is not ignored in some contexts, the purpose for the existence of the system will be nullified
. (A computer mail question sent to me by a student, Dina Kurktchi. It is just the right question.)

In Stapleford, England, I came across a school door that was very difficult to open, requiring simultaneous operation of two latches, one at the very top of the door, the other down low. The latches were difficult to find, to reach, and to use. But the difficulties were deliberate. This was good design. The door was at a school for handicapped children, and the school didn't want the children to be able to get out to the street without an adult. Only adults were large enough to operate the two latches. Violating the rules of ease of use is just what was needed.

Most things are intended to be easy to use, but aren't. But some things are deliberately difficult to use—and ought to be. The number of things that should be difficult to use is surprisingly large:

       
•
  
Any door designed to keep people in or out.

       
•
  
Security systems, designed so that only authorized people will be able to use them.

       
•
  
Dangerous equipment, which should be restricted.

       
•
  
Dangerous operations that might lead to death or injury if done accidentally or in error.

BOOK: The Design of Everyday Things
7.26Mb size Format: txt, pdf, ePub
ads

Other books

Undercover Lover by Tibby Armstrong
Life Happens by Sandra Steffen
The Last Girl by Kitty Thomas
Double Tap by Steve Martini
The Pink and the Grey by Anthony Camber
Never Kiss a Bad Boy by Flite, Nora
Re-Creations by Grace Livingston Hill
Grasping For Freedom by Debra Kayn
The Glorious Cause by Jeff Shaara


readsbookonline.com Copyright 2016 - 2024