Read Thinking, Fast and Slow Online
Authors: Daniel Kahneman
The causal version of the cab problem had the form of a stereotype: Green drivers are dangerous. Stereotypes are statements about the group that are (at least tentatively) accepted as facts about every member. Hely re are two examples:
Most of the graduates of this inner-city school go to college.
Interest in cycling is widespread in France.
These statements are readily interpreted as setting up a propensity in individual members of the group, and they fit in a causal story. Many graduates of this particular inner-city school are eager and able to go to college, presumably because of some beneficial features of life in that school. There are forces in French culture and social life that cause many Frenchmen to take an interest in cycling. You will be reminded of these facts when you think about the likelihood that a particular graduate of the school will attend college, or when you wonder whether to bring up the Tour de France in a conversation with a Frenchman you just met.
Stereotyping
is a bad word in our culture, but in my usage it is neutral. One of the basic characteristics of System 1 is that it represents categories as norms and prototypical exemplars. This is how we think of horses, refrigerators, and New York police officers; we hold in memory a representation of one or more “normal” members of each of these categories. When the categories are social, these representations are called stereotypes. Some stereotypes are perniciously wrong, and hostile stereotyping can have dreadful consequences, but the psychological facts cannot be avoided: stereotypes, both correct and false, are how we think of categories.
You may note the irony. In the context of the cab problem, the neglect of base-rate information is a cognitive flaw, a failure of Bayesian reasoning, and the reliance on causal base rates is desirable. Stereotyping the Green drivers improves the accuracy of judgment. In other contexts, however, such as hiring or profiling, there is a strong social norm against stereotyping, which is also embedded in the law. This is as it should be. In sensitive social contexts, we do not want to draw possibly erroneous conclusions about the individual from the statistics of the group. We consider it morally desirable for base rates to be treated as statistical facts about the group rather than as presumptive facts about individuals. In other words, we reject causal base rates.
The social norm against stereotyping, including the opposition to profiling, has been highly beneficial in creating a more civilized and more equal society. It is useful to remember, however, that neglecting valid stereotypes inevitably results in suboptimal judgments. Resistance to stereotyping is a laudable moral position, but the simplistic idea that the resistance is costless is wrong. The costs are worth paying to achieve a better society, but denying that the costs exist, while satisfying to the soul and politically correct, is not scientifically defensible. Reliance on the affect heuristic is common in politically charged arguments. The positions we favor have no cost and those we oppose have no benefits. We should be able to do better.
Causal Situations
Amos and I constructed the variants of the cab problem, but we did not invent the powerful notion of causal base rates; we borrowed it from the psychologist Icek Ajzen. In his experiment, Ajzen showed his participants brief vignettes describing some students who had taken an exam at Yale and asked the participants to judge the probability that each student had passed the test. The manipulation of causal bs oase rates was straightforward: Ajzen told one group that the students they saw had been drawn from a class in which 75% passed the exam, and told another group that the same students had been in a class in which only 25% passed. This is a powerful manipulation, because the base rate of passing suggests the immediate inference that the test that only 25% passed must have been brutally difficult. The difficulty of a test is, of course, one of the causal factors that determine every student’s outcome. As expected, Ajzen’s subjects were highly sensitive to the causal base rates, and every student was judged more likely to pass in the high-success condition than in the high-failure rate.
Ajzen used an ingenious method to suggest a noncausal base rate. He told his subjects that the students they saw had been drawn from a sample, which itself was constructed by selecting students who had passed or failed the exam. For example, the information for the high-failure group read as follows:
The investigator was mainly interested in the causes of failure and constructed a sample in which 75% had failed the examination.
Note the difference. This base rate is a purely statistical fact about the ensemble from which cases have been drawn. It has no bearing on the question asked, which is whether the individual student passed or failed the test. As expected, the explicitly stated base rates had some effects on judgment, but they had much less impact than the statistically equivalent causal base rates. System 1 can deal with stories in which the elements are causally linked, but it is weak in statistical reasoning. For a Bayesian thinker, of course, the versions are equivalent. It is tempting to conclude that we have reached a satisfactory conclusion: causal base rates are used; merely statistical facts are (more or less) neglected. The next study, one of my all-time favorites, shows that the situation is rather more complex.
Can Psychology be Taught?
The reckless cabdrivers and the impossibly difficult exam illustrate two inferences that people can draw from causal base rates: a stereotypical trait that is attributed to an individual, and a significant feature of the situation that affects an individual’s outcome. The participants in the experiments made the correct inferences and their judgments improved. Unfortunately, things do not always work out so well. The classic experiment I describe next shows that people will not draw from base-rate information an inference that conflicts with other beliefs. It also supports the uncomfortable conclusion that teaching psychology is mostly a waste of time.
The experiment was conducted a long time ago by the social psychologist Richard Nisbett and his student Eugene Borgida, at the University of Michigan. They told students about the renowned “helping experiment” that had been conducted a few years earlier at New York University. Participants in that experiment were led to individual booths and invited to speak over the intercom about their personal lives and problems. They were to talk in turn for about two minutes. Only one microphone was active at any one time. There were six participants in each group, one of whom was a stooge. The stooge spoke first, following a script prepared by the experimenters. He described his problems adjusting to New York and admitted with obvious embarrassment that he was prone to seizures, especially when stressed. All the participants then had a turn. When the microphone was again turned over to the stooge, he became agitated and incoherent, said he felt a seizure coming on, andpeo asked for someone to help him. The last words heard from him were, “C-could somebody-er-er-help-er-uh-uh-uh [choking sounds]. I…I’m gonna die-er-er-er I’m…gonna die-er-er-I seizure I-er [chokes, then quiet].” At this point the microphone of the next participant automatically became active, and nothing more was heard from the possibly dying individual.
What do you think the participants in the experiment did? So far as the participants knew, one of them was having a seizure and had asked for help. However, there were several other people who could possibly respond, so perhaps one could stay safely in one’s booth. These were the results: only four of the fifteen participants responded immediately to the appeal for help. Six never got out of their booth, and five others came out only well after the “seizure victim” apparently choked. The experiment shows that individuals feel relieved of responsibility when they know that others have heard the same request for help.
Did the results surprise you? Very probably. Most of us think of ourselves as decent people who would rush to help in such a situation, and we expect other decent people to do the same. The point of the experiment, of course, was to show that this expectation is wrong. Even normal, decent people do not rush to help when they expect others to take on the unpleasantness of dealing with a seizure. And that means you, too.
Are you willing to endorse the following statement? “When I read the procedure of the helping experiment I thought I would come to the stranger’s help immediately, as I probably would if I found myself alone with a seizure victim. I was probably wrong. If I find myself in a situation in which other people have an opportunity to help, I might not step forward. The presence of others would reduce my sense of personal responsibility more than I initially thought.” This is what a teacher of psychology would hope you would learn. Would you have made the same inferences by yourself?
The psychology professor who describes the helping experiment wants the students to view the low base rate as causal, just as in the case of the fictitious Yale exam. He wants them to infer, in both cases, that a surprisingly high rate of failure implies a very difficult test. The lesson students are meant to take away is that some potent feature of the situation, such as the diffusion of responsibility, induces normal and decent people such as them to behave in a surprisingly unhelpful way.
Changing one’s mind about human nature is hard work, and changing one’s mind for the worse about oneself is even harder. Nisbett and Borgida suspected that students would resist the work and the unpleasantness. Of course, the students would be able and willing to recite the details of the helping experiment on a test, and would even repeat the “official” interpretation in terms of diffusion of responsibility. But did their beliefs about human nature really change? To find out, Nisbett and Borgida showed them videos of brief interviews allegedly conducted with two people who had participated in the New York study. The interviews were short and bland. The interviewees appeared to be nice, normal, decent people. They described their hobbies, their spare-time activities, and their plans for the future, which were entirely conventional. After watching the video of an interview, the students guessed how quickly that particular person had come to the aid of the stricken stranger.
To apply Bayesian reasoning to the task the students were assigned, you should first ask yourself what you would have guessed about the a stwo individuals if you had not seen their interviews. This question is answered by consulting the base rate. We have been told that only 4 of the 15 participants in the experiment rushed to help after the first request. The probability that an unidentified participant had been immediately helpful is therefore 27%. Thus your prior belief about any unspecified participant should be that he did not rush to help. Next, Bayesian logic requires you to adjust your judgment in light of any relevant information about the individual. However, the videos were carefully designed to be uninformative; they provided no reason to suspect that the individuals would be either more or less helpful than a randomly chosen student. In the absence of useful new information, the Bayesian solution is to stay with the base rates.
Nisbett and Borgida asked two groups of students to watch the videos and predict the behavior of the two individuals. The students in the first group were told only about the procedure of the helping experiment, not about its results. Their predictions reflected their views of human nature and their understanding of the situation. As you might expect, they predicted that both individuals would immediately rush to the victim’s aid. The second group of students knew both the procedure of the experiment and its results. The comparison of the predictions of the two groups provides an answer to a significant question: Did students learn from the results of the helping experiment anything that significantly changed their way of thinking? The answer is straightforward: they learned nothing at all. Their predictions about the two individuals were indistinguishable from the predictions made by students who had not been exposed to the statistical results of the experiment. They knew the base rate in the group from which the individuals had been drawn, but they remained convinced that the people they saw on the video had been quick to help the stricken stranger.
For teachers of psychology, the implications of this study are disheartening. When we teach our students about the behavior of people in the helping experiment, we expect them to learn something they had not known before; we wish to change how they think about people’s behavior in a particular situation. This goal was not accomplished in the Nisbett-Borgida study, and there is no reason to believe that the results would have been different if they had chosen another surprising psychological experiment. Indeed, Nisbett and Borgida reported similar findings in teaching another study, in which mild social pressure caused people to accept much more painful electric shocks than most of us (and them) would have expected. Students who do not develop a new appreciation for the power of social setting have learned nothing of value from the experiment. The predictions they make about random strangers, or about their own behavior, indicate that they have not changed their view of how they would have behaved. In the words of Nisbett and Borgida, students “quietly exempt themselves” (and their friends and acquaintances) from the conclusions of experiments that surprise them. Teachers of psychology should not despair, however, because Nisbett and Borgida report a way to make their students appreciate the point of the helping experiment. They took a new group of students and taught them the procedure of the experiment but did not tell them the group results. They showed the two videos and simply told their students that the two individuals they had just seen had not helped the stranger, then asked them to guess the global results. The outcome was dramatic: the students’ guesses were extremely accurate.