Read Thinking, Fast and Slow Online

Authors: Daniel Kahneman

Thinking, Fast and Slow (8 page)

The bat-and-ball problem was mentioned earlier as a test of people’s tendency to answer questions with the first idea that comes to their mind, without checking it. Shane Frederick’s Cognitive Reflection Test consists of the bat-and-ball problem and two others, all chosen because they evoke an immediate intuitive answer that is incorrect. The other two items in the CRT are:

If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100 machines to make 100 widgets?

100 minutes OR 5 minutes

 

In a lake, there is a patch of lily pads. Every day, the patch doubles in size.

If it takes 48 days for the patch to cover the entire lake, how long would it take for the patch to cover half of the lake?

24 days OR 47 days

 

The correct answers to both problems are in a footnote at the bottom of the page.
*
The experimenters recruited 40 Princeton students to take the CRT. Half of them saw the puzzles in a small font in washed-out gray print. The puzzles were legible, but the font induced cognitive strain. The results tell a clear story: 90% of the students who saw the CRT in normal font made at least one mistake in the test, but the proportion dropped to 35% when the font was barely legible. You read this correctly: performance was better with the bad font. Cognitive strain, whatever its source, mobilizes System 2, which is more likely to reject the intuitive answer suggested by System 1.

The Pleasure of Cognitive Ease

 

An article titled “Mind at Ease Puts a Smile on the Face” describes an experiment in which participants were briefly shown pictures of objects. Some of these pictures were made easier to recognize by showing the outline of the object just before the complete image was shown, so briefly that the contours were never noticed. Emotional reactions were measured by recording electrical impulses from facial muscles, registering changes of expression that are too slight and too brief to be detectable by observers. As expected, people showed a faint smile and relaxed brows when the pictures were easier to see. It appears to be a feature of System 1 that cognitive ease is associated with good feelings.

As expected, easily pronounced words evoke a favorable attitude. Companies with pronounceable names dmisorrectlo better than others for the first week after the stock is issued, though the effect disappears over time. Stocks with pronounceable trading symbols (like KAR or LUNMOO) outperform those with tongue-twisting tickers like PXG or RDO—and they appear to retain a small advantage over some time. A study conducted in Switzerland found that investors believe that stocks with fluent names like Emmi, Swissfirst, and Comet will earn higher returns than those with clunky labels like Geberit and Ypsomed.

As we saw in figure 5, repetition induces cognitive ease and a comforting feeling of familiarity. The famed psychologist Robert Zajonc dedicated much of his career to the study of the link between the repetition of an arbitrary stimulus and the mild affection that people eventually have for it. Zajonc called it the
mere exposure effect
. A demonstration conducted in the student newspapers of the University of Michigan and of Michigan State University is one of my favorite experiments. For a period of some weeks, an ad-like box appeared on the front page of the paper, which contained one of the following Turkish (or Turkish-sounding) words:
kadirga
,
saricik
,
biwonjni
,
nansoma
, and
iktitaf
. The frequency with which the words were repeated varied: one of the words was shown only once, the others appeared on two, five, ten, or twenty-five separate occasions. (The words that were presented most often in one of the university papers were the least frequent in the other.) No explanation was offered, and readers’ queries were answered by the statement that “the purchaser of the display wished for anonymity.”

When the mysterious series of ads ended, the investigators sent questionnaires to the university communities, asking for impressions of whether each of the words “means something ‘good’ or something ‘bad.’” The results were spectacular: the words that were presented more frequently were rated much more favorably than the words that had been shown only once or twice. The finding has been confirmed in many experiments, using Chinese ideographs, faces, and randomly shaped polygons.

The mere exposure effect does not depend on the conscious experience of familiarity. In fact, the effect does not depend on consciousness at all: it occurs even when the repeated words or pictures are shown so quickly that the observers never become aware of having seen them. They still end up liking the words or pictures that were presented more frequently. As should be clear by now, System 1 can respond to impressions of events of which System 2 is unaware. Indeed, the mere exposure effect is actually stronger for stimuli that the individual never consciously sees.

Zajonc argued that the effect of repetition on liking is a profoundly important biological fact, and that it extends to all animals. To survive in a frequently dangerous world, an organism should react cautiously to a novel stimulus, with withdrawal and fear. Survival prospects are poor for an animal that is not suspicious of novelty. However, it is also adaptive for the initial caution to fade if the stimulus is actually safe. The mere exposure effect occurs, Zajonc claimed, because the repeated exposure of a stimulus is followed by nothing bad. Such a stimulus will eventually become a safety signal, and safety is good. Obviously, this argument is not restricted to humans. To make that point, one of Zajonc’s associates exposed two sets of fertile chicken eggs to different tones. After they hatched, the chicks consistently emitted fewer distress calls when exposed to the tone they had heard while inhabiting the shell.

Zajonc offered an eloquent summary of hing icts program of research:

The consequences of repeated exposures benefit the organism in its relations to the immediate animate and inanimate environment. They allow the organism to distinguish objects and habitats that are safe from those that are not, and they are the most primitive basis of social attachments. Therefore, they form the basis for social organization and cohesion—the basic sources of psychological and social stability.

 

The link between positive emotion and cognitive ease in System 1 has a long evolutionary history.

Ease, Mood, and Intuition

 

Around 1960, a young psychologist named Sarnoff Mednick thought he had identified the essence of creativity. His idea was as simple as it was powerful: creativity is associative memory that works exceptionally well. He made up a test, called the Remote Association Test (RAT), which is still often used in studies of creativity.

For an easy example, consider the following three words:

cottage Swiss cake

Can you think of a word that is associated with all three? You probably worked out that the answer is
cheese
. Now try this:

dive light rocket

This problem is much harder, but it has a unique correct answer, which every speaker of English recognizes, although less than 20% of a sample of students found it within 15 seconds. The answer is
sky
. Of course, not every triad of words has a solution. For example, the words
dream
,
ball
,
book
do not have a shared association that everyone will recognize as valid.

Several teams of German psychologists that have studied the RAT in recent years have come up with remarkable discoveries about cognitive ease. One of the teams raised two questions: Can people feel that a triad of words has a solution before they know what the solution is? How does mood influence performance in this task? To find out, they first made some of their subjects happy and others sad, by asking them to think for several minutes about happy or sad episodes in their lives. Then they presented these subjects with a series of triads, half of them linked (such as
dive
,
light
,
rocket
) and half unlinked (such as
dream
,
ball
,
book
), and instructed them to press one of two keys very quickly to indicate their guess about whether the triad was linked. The time allowed for this guess, 2 seconds, was much too short for the actual solution to come to anyone’s mind.

The first surprise is that people’s guesses are much more accurate than they would be by chance. I find this astonishing. A sense of cognitive ease is apparently generated by a very faint signal from the associative machine, which “knows” that the three words are coherent (share an association) long before the association is retrieved. The role of cognitive ease in the judgment was confirmed experimentally by another German team: manipulations that increase cognitive ease (priming, a clear font, pre-exposing words) all increase the tendency to see the words as linked.

Another remarkable discovery is the powerful effect of mood on this intuitive performance. The experimentershape tende computed an “intuition index” to measure accuracy. They found that putting the participants in a good mood before the test by having them think happy thoughts more than doubled accuracy. An even more striking result is that unhappy subjects were completely incapable of performing the intuitive task accurately; their guesses were no better than random. Mood evidently affects the operation of System 1: when we are uncomfortable and unhappy, we lose touch with our intuition.

These findings add to the growing evidence that good mood, intuition, creativity, gullibility, and increased reliance on System 1 form a cluster. At the other pole, sadness, vigilance, suspicion, an analytic approach, and increased effort also go together. A happy mood loosens the control of System 2 over performance: when in a good mood, people become more intuitive and more creative but also less vigilant and more prone to logical errors. Here again, as in the mere exposure effect, the connection makes biological sense. A good mood is a signal that things are generally going well, the environment is safe, and it is all right to let one’s guard down. A bad mood indicates that things are not going very well, there may be a threat, and vigilance is required. Cognitive ease is both a cause and a consequence of a pleasant feeling.

The Remote Association Test has more to tell us about the link between cognitive ease and positive affect. Briefly consider two triads of words:

sleep mail switch

salt deep foam

You could not know it, of course, but measurements of electrical activity in the muscles of your face would probably have shown a slight smile when you read the second triad, which is coherent (
sea
is the solution). This smiling reaction to coherence appears in subjects who are told nothing about common associates; they are merely shown a vertically arranged triad of words and instructed to press the space bar after they have read it. The impression of cognitive ease that comes with the presentation of a coherent triad appears to be mildly pleasurable in itself.

The evidence that we have about good feelings, cognitive ease, and the intuition of coherence is, as scientists say, correlational but not necessarily causal. Cognitive ease and smiling occur together, but do the good feelings actually lead to intuitions of coherence? Yes, they do. The proof comes from a clever experimental approach that has become increasingly popular. Some participants were given a cover story that provided an alternative interpretation for their good feeling: they were told about music played in their earphones that “previous research showed that this music influences the emotional reactions of individuals.” This story completely eliminates the intuition of coherence. The finding shows that the brief emotional response that follows the presentation of a triad of words (pleasant if the triad is coherent, unpleasant otherwise) is actually the basis of judgments of coherence. There is nothing here that System 1 cannot do. Emotional changes are now expected, and because they are unsurprising they are not linked causally to the words.

This is as good as psychological research ever gets, in its combination of experimental techniques and in its results, which are both robust and extremely surprising. We have learned a great deal about the automatic workings of System 1 in the last decades. Much of what we now know would have sounded like science fiction thirty or forty years ago. It was beyond imagining that bad font influences judgments of truth and improves cognitive performance, or that an emotional response to the cognitive ease of a tri pr that aad of words mediates impressions of coherence. Psychology has come a long way.

Speaking of Cognitive Ease

 

“Let’s not dismiss their business plan just because the font makes it hard to read.”

 

“We must be inclined to believe it because it has been repeated so often, but let’s think it through again.”

 

“Familiarity breeds liking. This is a mere exposure effect.”

 

“I’m in a very good mood today, and my System 2 is weaker than usual. I should be extra careful.”

 
Norms, Surprises, and Causes
 

The central characteristics and functions of System 1 and System 2 have now been introduced, with a more detailed treatment of System 1. Freely mixing metaphors, we have in our head a remarkably powerful computer, not fast by conventional hardware standards, but able to represent the structure of our world by various types of associative links in a vast network of various types of ideas. The spreading of activation in the associative machine is automatic, but we (System 2) have some ability to control the search of memory, and also to program it so that the detection of an event in the environment can attract attention. We next go into more detail of the wonders and limitation of what System 1 can do.

Assessing Normality

 

The main function of System 1 is to maintain and update a model of your personal world, which represents what is normal in it. The model is constructed by associations that link ideas of circumstances, events, actions, and outcomes that co-occur with some regularity, either at the same time or within a relatively short interval. As these links are formed and strengthened, the pattern of associated ideas comes to represent the structure of events in your life, and it determines your interpretation of the present as well as your expectations of the future.

A capacity for surprise is an essential aspect of our mental life, and surprise itself is the most sensitive indication of how we understand our world and what we expect from it. There are two main varieties of surprise. Some expectations are active and conscious—you know you are waiting for a particular event to happen. When the hour is near, you may be expecting the sound of the door as your child returns from school; when the door opens you expect the sound of a familiar voice. You will be surprised if an actively expected event does not occur. But there is a much larger category of events that you expect passively; you don’t wait for them, but you are not surprised when they happen. These are events that are normal in a situation, though not sufficiently probable to be actively expected.

A single incident may make a recurrence less surprising. Some years ago, my wife and I were of dealWhen normvacationing in a small island resort on the Great Barrier Reef. There are only forty guest rooms on the island. When we came to dinner, we were surprised to meet an acquaintance, a psychologist named Jon. We greeted each other warmly and commented on the coincidence. Jon left the resort the next day. About two weeks later, we were in a theater in London. A latecomer sat next to me after the lights went down. When the lights came up for the intermission, I saw that my neighbor was Jon. My wife and I commented later that we were simultaneously conscious of two facts: first, this was a more remarkable coincidence than the first meeting; second, we were distinctly
less
surprised to meet Jon on the second occasion than we had been on the first. Evidently, the first meeting had somehow changed the idea of Jon in our minds. He was now “the psychologist who shows up when we travel abroad.” We (System 2) knew this was a ludicrous idea, but our System 1 had made it seem almost normal to meet Jon in strange places. We would have experienced much more surprise if we had met any acquaintance other than Jon in the next seat of a London theater. By any measure of probability, meeting Jon in the theater was much less likely than meeting any one of our hundreds of acquaintances—yet meeting Jon seemed more normal.

Under some conditions, passive expectations quickly turn active, as we found in another coincidence. On a Sunday evening some years ago, we were driving from New York City to Princeton, as we had been doing every week for a long time. We saw an unusual sight: a car on fire by the side of the road. When we reached the same stretch of road the following Sunday, another car was burning there. Here again, we found that we were distinctly less surprised on the second occasion than we had been on the first. This was now “the place where cars catch fire.” Because the circumstances of the recurrence were the same, the second incident was sufficient to create an active expectation: for months, perhaps for years, after the event we were reminded of burning cars whenever we reached that spot of the road and were quite prepared to see another one (but of course we never did).

The psychologist Dale Miller and I wrote an essay in which we attempted to explain how events come to be perceived as normal or abnormal. I will use an example from our description of “norm theory,” although my interpretation of it has changed slightly:

An observer, casually watching the patrons at a neighboring table in a fashionable restaurant, notices that the first guest to taste the soup winces, as if in pain. The normality of a multitude of events will be altered by this incident. It is now unsurprising for the guest who first tasted the soup to startle violently when touched by a waiter; it is also unsurprising for another guest to stifle a cry when tasting soup from the same tureen. These events and many others appear more normal than they would have otherwise, but not necessarily because they confirm advance expectations. Rather, they appear normal because they recruit the original episode, retrieve it from memory, and are interpreted in conjunction with it.

 

Imagine yourself the observer at the restaurant. You were surprised by the first guest’s unusual reaction to the soup, and surprised again by the startled response to the waiter’s touch. However, the second abnormal event will retrieve the first from memory, and both make sense together. The two events fit into a pattern, in which the guest is an exceptionally tense person. On the other hand, if the next thing that happens after the first guest’s grimace is that another customer rejects the soup, these two surprises will be linked and thehinsur soup will surely be blamed.

“How many animals of each kind did Moses take into the ark?” The number of people who detect what is wrong with this question is so small that it has been dubbed the “Moses illusion.” Moses took no animals into the ark; Noah did. Like the incident of the wincing soup eater, the Moses illusion is readily explained by norm theory. The idea of animals going into the ark sets up a biblical context, and Moses is not abnormal in that context. You did not positively expect him, but the mention of his name is not surprising. It also helps that Moses and Noah have the same vowel sound and number of syllables. As with the triads that produce cognitive ease, you unconsciously detect associative coherence between “Moses” and “ark” and so quickly accept the question. Replace Moses with George W. Bush in this sentence and you will have a poor political joke but no illusion.

When something cement does not fit into the current context of activated ideas, the system detects an abnormality, as you just experienced. You had no particular idea of what was coming after
something
, but you knew when the word
cement
came that it was abnormal in that sentence. Studies of brain responses have shown that violations of normality are detected with astonishing speed and subtlety. In a recent experiment, people heard the sentence “Earth revolves around the trouble every year.” A distinctive pattern was detected in brain activity, starting within two-tenths of a second of the onset of the odd word. Even more remarkable, the same brain response occurs at the same speed when a male voice says, “I believe I am pregnant because I feel sick every morning,” or when an upper-class voice says, “I have a large tattoo on my back.” A vast amount of world knowledge must instantly be brought to bear for the incongruity to be recognized: the voice must be identified as upper-class English and confronted with the generalization that large tattoos are uncommon in the upper class.

We are able to communicate with each other because our knowledge of the world and our use of words are largely shared. When I mention a table, without specifying further, you understand that I mean a normal table. You know with certainty that its surface is approximately level and that it has far fewer than 25 legs. We have
norms
for a vast number of categories, and these norms provide the background for the immediate detection of anomalies such as pregnant men and tattooed aristocrats.

To appreciate the role of norms in communication, consider the sentence “The large mouse climbed over the trunk of the very small elephant.” I can count on your having norms for the size of mice and elephants that are not too far from mine. The norms specify a typical or average size for these animals, and they also contain information about the range or variability within the category. It is very unlikely that either of us got the image in our mind’s eye of a mouse larger than an elephant striding over an elephant smaller than a mouse. Instead, we each separately but jointly visualized a mouse smaller than a shoe clambering over an elephant larger than a sofa. System 1, which understands language, has access to norms of categories, which specify the range of plausible values as well as the most typical cases.

Seeing Causes and Intentions

 

“Fred’s parents arrived late. The caterers were expected soon. Fred was angry.” You know why Fred was angry, and it is not because the caterers were expected soon. In your network of associationsmals in co, anger and lack of punctuality are linked as an effect and its possible cause, but there is no such link between anger and the idea of expecting caterers. A coherent story was instantly constructed as you read; you immediately knew the cause of Fred’s anger. Finding such causal connections is part of understanding a story and is an automatic operation of System 1. System 2, your conscious self, was offered the causal interpretation and accepted it.

A story in Nassim Taleb’s
The Black Swan
illustrates this automatic search for causality. He reports that bond prices initially rose on the day of Saddam Hussein’s capture in his hiding place in Iraq. Investors were apparently seeking safer assets that morning, and the Bloomberg News service flashed this headline:
U.S. TREASURIES RISE; HUSSEIN CAPTURE MAY NOT CURB TERRORISM
. Half an hour later, bond prices fell back and the revised headline read:
U.S. TREASURIES FALL; HUSSEIN CAPTURE BOOSTS ALLURE OF RISKY ASSETS
. Obviously, Hussein’s capture was the major event of the day, and because of the way the automatic search for causes shapes our thinking, that event was destined to be the explanation of whatever happened in the market on that day. The two headlines look superficially like explanations of what happened in the market, but a statement that can explain two contradictory outcomes explains nothing at all. In fact, all the headlines do is satisfy our need for coherence: a large event is supposed to have consequences, and consequences need causes to explain them. We have limited information about what happened on a day, and System 1 is adept at finding a coherent causal story that links the fragments of knowledge at its disposal.

Read this sentence:

After spending a day exploring beautiful sights in the crowded streets of New York, Jane discovered that her wallet was missing.

 

When people who had read this brief story (along with many others) were given a surprise recall test, the word
pickpocket
was more strongly associated with the story than the word
sights
, even though the latter was actually in the sentence while the former was not. The rules of associative coherence tell us what happened. The event of a lost wallet could evoke many different causes: the wallet slipped out of a pocket, was left in the restaurant, etc. However, when the ideas of lost wallet, New York, and crowds are juxtaposed, they jointly evoke the explanation that a pickpocket caused the loss. In the story of the startling soup, the outcome—whether another customer wincing at the taste of the soup or the first person’s extreme reaction to the waiter’s touch—brings about an associatively coherent interpretation of the initial surprise, completing a plausible story.

The aristocratic Belgian psychologist Albert Michotte published a book in 1945 (translated into English in 1963) that overturned centuries of thinking about causality, going back at least to Hume’s examination of the association of ideas. The commonly accepted wisdom was that we infer physical causality from repeated observations of correlations among events. We have had myriad experiences in which we saw one object in motion touching another object, which immediately starts to move, often (but not always) in the same direction. This is what happens when a billiard ball hits another, and it is also what happens when you knock over a vase by brushing against it. Michotte had a different idea: he argued that we
see
causality, just as directly as we see color. To make his point, he created episodes in n ttiowhich a black square drawn on paper is seen in motion; it comes into contact with another square, which immediately begins to move. The observers know that there is no real physical contact, but they nevertheless have a powerful “illusion of causality.” If the second object starts moving instantly, they describe it as having been “launched” by the first. Experiments have shown that six-month-old infants see the sequence of events as a cause-effect scenario, and they indicate surprise when the sequence is altered. We are evidently ready from birth to have
impressions
of causality, which do not depend on reasoning about patterns of causation. They are products of System 1.

In 1944, at about the same time as Michotte published his demonstrations of physical causality, the psychologists Fritz Heider and Mary-Ann Simmel used a method similar to Michotte’s to demonstrate the perception of
intentional
causality. They made a film, which lasts all of one minute and forty seconds, in which you see a large triangle, a small triangle, and a circle moving around a shape that looks like a schematic view of a house with an open door. Viewers see an aggressive large triangle bullying a smaller triangle, a terrified circle, the circle and the small triangle joining forces to defeat the bully; they also observe much interaction around a door and then an explosive finale. The perception of intention and emotion is irresistible; only people afflicted by autism do not experience it. All this is entirely in your mind, of course. Your mind is ready and even eager to identify agents, assign them personality traits and specific intentions, and view their actions as expressing individual propensities. Here again, the evidence is that we are born prepared to make intentional attributions: infants under one year old identify bullies and victims, and expect a pursuer to follow the most direct path in attempting to catch whatever it is chasing.

Other books

Tainted Grace by M. Lauryl Lewis
Stay At Home Dead by Allen, Jeffrey
The Invisible Papers by Agostino Scafidi
His Allure, Her Passion by Juliana Haygert


readsbookonline.com Copyright 2016 - 2024