Read Insectopedia Online

Authors: Hugh Raffles

Tags: #Non-Fiction, #Writing, #Science

Insectopedia (50 page)

And then, as if he hasn’t traveled quite far enough, von Uexküll takes an unexpected turn. The worlds of animals and men, he says, are often governed not by logic but by magic. The intricate boring of a bark beetle beneath the surface of a tree is a magical phenomenon. The owner of a dog is a magical figure to the animal. The unlearned routes of migratory birds are similarly beyond understanding. He shows us how an oak tree is many different things to the many different animals that live in and around it. He shows us how sound waves are a different entity to the physicist who studies radio frequency than they are to the musician. (“In the one there are only waves, in the other only sounds. Yet both are equally real.”)
30
I think of Annmarie Mol’s atherosclerosis, that gesture of covering the corpse’s face; I think of those strange fighting fruit flies with their poor ground-up heads. “So it goes on,” says von Uexküll. And so we follow him into a universe saturated with signs, a semiotic universe of subjective responses and near-limitless human and animal subjectivities.

Of course I like this. But it makes me nervous. Like a plunge into the void. There is so much possible between seeing and perceiving. And a world of signs is also a world of communication. Senses combining, working together, overlapping, contradicting. So what’s this I’m hearing?
Magical sounds from unearthly sources? Sounds? Noise? Music? It’s very loud. And it’s very strange. It’s on my headphones. It’s coming from New Mexico …

The Sound of Global
W
arming
1.

Listen. It’s the sound of global warming. It’s getting even louder …

2.

Close your eyes. We’re in another world. A wet world, watery, echoey, a jungle of pipes perhaps. Or a subterranean cave. We could be in that cathedral of a cave where the Princess’s crippled ship crash-lands in Hayao Miyazaki’s
Nausicaä of the Valley of the Wind
(his ecofantasy anime of “The Lady Who Loved Worms”), an oversize underground tropical lagoon, an oasis of mysterious life in a prophetic poisoned land.

We could be anywhere.

What are these unearthly noises? High-pitched squeaks and deep groans, the long, low creak of huge doors (that can’t be doors), the electric crackling of rapid-fire static. High-pitched chirps, more chirps, that grating sound, which suddenly fades, that rush of liquid like a wave rolling up the beach. Something drumming, something fizzing, something gnawing, something splashing, something squeaking … something orchestrated. Over there: a detonation. Close by: something heavy raises itself to its feet with a querulous bellow. There are animals in here. What kinds of animals? What are they doing? Polyrhythmic, polyphonic animals chirping in counterpoint, call-and-response. So much activity in here. So much motion. So much rhythm. More clicks, more chirps, more squeaks, more splashes, more echo.

Where are we?

3.

We’re inside a tree. A piñon pine (
Pinus edulis
). We’re in its vascular tissue, just beneath the outer bark, inside the phloem and cambium. We’re enclosed in a rich sound-world, a world audible only on David Dunn’s CD
The Sound of Light in Trees
, the one that’s on my headphones.
1

The tree we’re inside could be thirty feet tall. That’s big if you’re tiny, no larger than a grain of rice, like the piñon engraver beetles (
Ips confusus
) that arrive by the thousands to lay their eggs and hatch their larvae in these tough, slow-growing trees, with their much-loved seeds and aromatic wood, that dominate the harshly beautiful pine-juniper landscapes of northern New Mexico.

The piñon engravers are bark beetles, members of the Scolytidae, one of only a very small number of insect families whose adults are able to pierce the outer bark of woody plants. Until a few years ago, they seemed to have reached a kind of compact with the piñons. Attracted by signals from pioneer males, the female beetles gathered on weak and dying trees to bore their tunnels and lay their eggs. Their incursions through the bark interrupted the upflow of fluids and nutrients. The blue-stain fungus they carry further clogged the system. The weak trees capitulated. Their demise thinned the forest yet also strengthened it, the pine population benefiting from the easing of intraspecific competition for light, water, and nutrients. But only 10 to 15 percent of the male beetles’ dispersal flights ended in successful reproduction, and healthy trees had little trouble resisting their advances. The trees pumped resinous sap to seal the wounds in their bark, forcibly ejecting the intruders or trapping them in stickiness. Scented monoterpenes, volatile essential oils dissolved in the resin, neutralized the fungi.
2

But the droughts that swept the southwestern United States in the first years of this century introduced a new dynamic. Stressed by lack of water, the piñons produced less resin and found that the increasing sugar concentrations in their cells served only to bring more beetles. Higher levels of monoterpenes in the sap extruded from the engravers’ entry holes attracted even more insects. Cavitation—the collapse of
xylem tissue induced by the formation of vacuum bubbles under drought conditions—increased to such an extent that for some trees the acoustic emissions produced by the bubbles’ implosions became “an almost continuous ultrasound signature,” a soundtrack to which, as we will see, the beetles may have been paying close attention.
3

While the trees struggled, the unusually warm temperatures helped the beetles (and the fungi) raise their reproduction and general activity rates. The convergence of weakened trees and hyperactive beetles led to a catastrophic die-off of piñon pines in the region. In 2003, the peak year of the crisis, over 770,000 acres of New Mexico forest were affected. Millions of trees died, and no effective ideas emerged in response. Using aerial surveys taken by the U.S. Department of Agriculture Forest Service and studies of a piñon-juniper forest plot at the Los Alamos National Laboratory, researchers from the University of Arizona calculated a 40 to 90 percent mortality of piñons across New Mexico, Colorado, Utah, and Arizona in 2002 and 2003.
4
Assuming no similar events occur, it could take centuries for the landscapes to recover.

But everyone knows that similar events, and others unimagined, will occur. And as immediately devastating as was the loss of the piñons to local people and to animals such as the pine-nut-eating piñon jay, the death of the trees is felt most painfully in its etching on the landscape of a new sense of foreboding. The collapse earned its place among the spectacular “natural” events of recent years, whose rawest member is still Hurricane Katrina. The now-famous images from New Orleans revealed a cluster formed from race, class, bureaucratic incompetence, government indifference, and climate. The piñons’ fateful convergence acted on insects, fungi, trees, the insufficiency of expert knowledge, and again, climate. Both events made it starkly apparent that new formations in the age of climate change are unlikely to produce linear outcomes. The future is deeply marked by the inevitable eruption of nonpredictable phenomena on startling scales.
5
Forget “homeland security.” Time itself has changed. We know catastrophes are coming, and we know they’ll take us by surprise.

4.

We’re inside a piñon pine in northern New Mexico. All around are engravers, other bark beetles, beetle larvae, and carpenter ants. That drumming is the ants, David Dunn tells me when I call him in Santa Fe. The detonations are cavitation events. That creaking is the tree swaying in the wind.

The Sound of Light in Trees
is a soundscape, a “sonic environment.”
6
It aims to tune us in to the aural dimension of our everyday world, to create what the anthropologist and soundscape pioneer Steven Feld calls “a sonic way of knowing and being in the world.”
7
The piñon environment is not one we can ordinarily perceive through sound. We need transducers—human and mechanical—to convert these inaudible-to-the-human-ear low frequency and ultrasonic emissions into vibrations within our acoustic range.
8
Knowing we need transmutation and translation heightens the strangeness of the recording, as does knowing that even with such mediation this world remains deeply inaccessible. There is an unusual, somehow troubling quality to this soundscape, immersive
and alien all at once, able to convey both the proximity and the indifference of the natural world, to capture that uneasy paradox at the core of the new realities of global warming.

Entering the piñon arouses dormant senses. I close my eyes to isolate the sounds and discover that listening to these insects might not be so different from collecting them. For me, the listening experience resonates with the Japanese neuroscientist Yoro Takeshi’s persuasive argument about the visual experience of finding, capturing, and studying insects. Yoro says that the Japanese conservationists who are trying to ban insect collecting are destructively shortsighted, that it is through collecting that people, particularly young people, learn what it means to sympathize with others and to live among other beings. Like many of the insect people we’ve met in this book, Yoro and his fellow collectors argue that the close attention demanded by this engagement with another life, another
tiny
life, develops unfamiliar ways not only of seeing but also of feeling, that the close focus on detail disrupts scale and hierarchical certainty, and that these experiences transmute into ethics. The focused attention on another life creates patience and sensitivity in the collector, Yoro claims, an awareness of subtle variations and other temporalities (change can be very slow, movement very fast, lives very short), and leads to an appreciation of differences, perhaps to a new way of being in the world.

This is seeing rather than merely looking, just as the piñon soundscape cultivates listening rather than merely hearing. Within these trees, among these animals, people “shift their thinking about the centrality of humans in the physical world,” David Dunn tells me, and I realize that unlike Yoro, he’s not looking for insect love but for something closer to appreciation or understanding. He doesn’t exclude the possibility that getting up close to insect sounds might also generate anxiety and reinforce antipathies.
9
After all, the insects are not the heroes of this New Mexican story.

Two years of recordings compressed into one hour. Sounds from many different trees edited together. Not just a recording but a composition that takes, remakes, and rearranges nonhuman sound. Even though it’s a self-conscious artifact, this kind of soundscape breaks from its precursor tradition of
musique concrète
, in which found sounds are explicitly
manipulated to emphasize and express human intervention.
10
David tells me that the accent in his work is on “the inherent nature of these things,” that the task is “to reveal aspects in time and space that are inherent in the materials” and to explore through sound the larger phenomena that these beings—the trees, the insects, the people—create and are a part of.

Thirty-five years as an avant-garde musician and sound artist, theorizing, composing, publishing, performing, collaborating, and of course, recording. There are still few ready-made tools. He uses open-source transducer systems of his own design to make low-frequency vibrations and ultrasonic emissions audible. He sends the contraptions to beetle specialists as far away as China. He runs workshops to show children how to make them.

Like many people in the Southwest in those years, David sat and stared at the piñons near his home. He watched their green needles turn to reddish brown, then drop. He thought about “the materiality of their world,” the wood, the impedance, the possibilities. He took the piezoelectric transducer disc from a Hallmark greeting card, glued it to a gutted meat thermometer, pushed the apparatus into the bark of the dying piñon, and angled it to pick up the vibrations. One per tree. Less than $10 each.

5.

Technology can bring us closer to the world, David Dunn tells me. Perhaps, he continues, the rich and complex soundscape accessible through a pair of headphones approximates the sensory experience of other forms of life, with their distinctive ambient sensitivities.

Among the best known of his numerous recordings is “Chaos and the Emergent Mind of the Pond,” a twenty-four-minute composition that discovers in the sounds of aquatic insects in North American and African ponds “a sonic multiverse of exquisite complexity.”
11

Listening to the pond with two omnidirectional ceramic hydrophones and a portable DAT recorder, he hears a rhythmic complexity altogether greater than that in most human music, patterns comparable only to the
most sophisticated computer compositions and the most complex African polyrhythmic drumming.

Other books

Blood Moon by T. Lynne Tolles
Dark Maiden by Townsend, Lindsay
The Cutting Edge by Dave Duncan
Secrets & Surrender 3 by L.G. Castillo
3 Breaths by LK Collins
Gauguin Connection, The by Ryan, Estelle
Wild by Brewer, Gil
Winterbringers by Gill Arbuthnott


readsbookonline.com Copyright 2016 - 2024