Read The King of Infinite Space Online

Authors: David Berlinski

The King of Infinite Space (18 page)

BOOK: The King of Infinite Space
10.9Mb size Format: txt, pdf, ePub
ads

Horace,
39

Hyperbola,
99

Hyperbolic plane.
See under
Planes

Hypotenuse,
69
,
100
.
See also
Pythagorean theorem

Identity,
25
,
50–51
,
68
,
142
,
144

of a point and pair of numbers,
112
(
see also
Points: point as pair of numbers
)

between shapes and numbers,
153

Inference,
15
,
17
,
19
,
43
,
44
,
49
,
123

rules of inference,
90

Infinite regress,
32

Infinity,
38
,
49
,
87
,
132
,
134
,
137

natural numbers as potentially infinite,
92–93

Intuition,
22
,
45
,
53
,
54
,
82

Inverse relationship,
81(n)
,
82
,
83
,
105
,
142
,
143
,
144

Isometry,
144

James, Henry,
117

Johnson, Samuel,
33
,
147

Joyce, D. E.,
62

Judt, Tony,
4

Jupiter and Antiope
(painting),
77–78
,
79
,
82
,
87

Kant, Immanuel,
117

Kazan, University of,
128–129

Kazan Messenger, The,
129
,
132

Kirillov, A. A.,
99

Klein, Felix,
140

Kline, Morris,
34

La Géométrie
(Descartes),
96

Latitude/longitude,
3

Leçons de géométrie élémentaire
(Hadamard),
27

Length,
22–23
,
33
,
35
,
36
,
159

Libri Decem
(Vitruvius Pollio),
1

Lines,
79
,
111

curved lines,
137
(
see also
Curvature
)

existence of,
107

hyperbolic lines,
134
,
135

line segments,
95
,
110–111

parallel lines,
34
,
84
,
84(n)
,
88
,
89–90
,
125
,
130
,
138
,
161

straight lines,
7
,
13
,
14
,
22
,
23
,
25
,
33
,
34
,
37
,
38
,
39
,
43
,
46
,
48
,
50
,
52
,
53
,
60
,
61
,
62
,
63
,
66
,
73
,
80–81
,
95
,
98
,
112
,
113
,
135
,
137
,
143
,
159
,
160
,
161

straight lines as ratio of three numbers,
112
,
113

Lobachevsky, Nicolai,
118
,
122–123
,
126
,
128–131
,
133
,
139

Logic,
2
,
12
,
23
,
34
,
53
,
54
,
59
,
65
,
80
,
82
,
83
,
90
,
107
,
108
,
119

of relationships,
24

See also
Syllogisms

Magnitudes,
7
,
94

Mallory, George,
58–59

Mathematical Thought from Ancient to Modern Times
(Kline),
34

Mathematics,
2–3
,
7
,
12
,
41
,
83
,
151

as doubtful,
123

mathematical physics,
144

and mountain-climbing pastoral,
57

Measurements/mensuration,
11

Middle Ages,
80

Mirror images,
68

Models,
13–14
,
108

Modus ponens
,
17
,
82

Moise, Edwin,
94

Monet, Claude,
152

Morality,
58
,
156

Mordell, Louis Joel,
57

Morley, Frank,
147

Motion,
25
,
26
,
27
,
28
,
29
,
63
,
143

as impossible,
43

power of geometrical objects to move or be moved,
36
,
37
,
39
,
52
,
68
,
95
,
145

rigid body moves,
144

ways of moving in a plane,
37

Mountain-climbing pastoral,
57–58

Mount Everest,
58

Multiplication,
103
,
104
,
110
,
112

Newton, Isaac,
47

Non-Euclidean geometries.
See under
Geometry

Nothing,
41
,
42
,
43–44

Notices of the American Mathematical Society
,
150

Numbers,
3
,
7
,
12
,
17
,
29
,
30
,
69
,
145
,
153

and distances,
23

fractions,
38
,
94
,
102
,
103

geometrical properties of numerals,
92

greatest/least numbers,
109

identifying points in space,
36

irrational numbers,
102

natural numbers,
91–92
,
92–93
,
95
,
101

natural numbers as potentially infinite,
92–93

negative numbers,
101–102
,
103
,
142

new numbers,
101–102

number as multitude composed of units,
93

and points,
109
(
see also
Points: point as pair of numbers
)

prime numbers,
100

rational numbers,
94
,
109

real numbers,
94
,
103
,
105–106
,
109
,
110
,
111
,
112

Roman numerals,
4

sets of numbers,
111–112

squaring/square roots of,
70
,
72
,
100
,
101
,
102
,
103
,
110
,
135–136

zero,
101
,
103
,
104
,
143

Oblongs,
161

Omar Khayyám,
120–121

On Nature
(Parmenides),
42

Paintings,
77–79
,
140

Pappus,
68

Papyrus,
8

Parabola,
98

Paradoxes,
38

Parallelism,
53
,
56
,
74
,
74(n)
,
81
,
87
.
See also
Lines: parallel lines
;
Parallel postulate

Parallelograms,
74
,
74(n)
,
75

Parallel postulate,
81(n)
,
117–124

denial/failure of,
118
,
120
,
123
,
131
,
137
,
139–140

and Pythagorean theorem,
119

See also
Axioms: fifth axiom

Parmenides,
42–43
,
44

Parts,
34–35
,
42

whole as greater than the part,
21
,
29–30

Pasch, Moritz,
34

Peirce, C. S.,
23

Perspective (in paintings),
141–142

Peyrard, François,
8

Planes,
14
,
33
,
38
,
39
,
40
,
41
,
94
,
96–97
,
108
,
111
,
112
,
138
,
143
,
144
,
152

defined,
35–36
,
159

degrees of freedom of,
37

existence of,
107

hyperbolic plane,
129–130
,
130(fig.)
,
134
,
135
,
137

projective plane,
141–142

Plato,
5
,
13
,
60
,
95
,
145

Playfair, Francis,
53–54
.
See also
Axioms: Playfair's axiom

Poincaré, Henri,
134

dictionary of,
138–139

Poincaré disk,
134–138
,
135(fig.)

Points,
3
,
7
,
13
,
33
,
37
,
53
,
87
,
111

vs. atoms,
42
,
43

“between two points,”
14
,
41
,
43
,
44
,
46
,
48
,
50
,
61
,
62
,
70
,
95
,
124–125
,
126
,
135
,
137

and continuity,
44

defined,
34
,
35
,
159

existence of,
49
,
107
,
109

hyperbolic points,
134

point as pair of numbers,
97–98
,
100
,
112
,
113–114
,
114–115

Polygons,
48

Postulates,
12
.
See also
Axioms

Praxinoscopes,
78

Precision,
4
,
59

Premises,
15–16
,
90

Principia
(Newton),
47

Proclus,
119

Proofs,
12
,
17
,
19
,
20
,
26
,
31
,
47
,
58
,
59
,
87
,
150

as artifacts,
32

and common beliefs,
20
,
21

as difficult,
65
,
89
,
148

of four-color theorem,
151

by Lobachevsky,
133

of parallel postulate,
119
,
120–122
,
124

proof by contradiction,
83
(
see also
Reductio ad absurdum
)

of Pythagorean theorem,
71–75
,
96

steps in,
59

of twenty-seventh proposition,
83–87
,
90

as way of life,
148
,
156
(
see also
Axiomatic systems: as way of life
)

Proportions,
7
,
94
,
108

Propositions,
6–7
,
11
,
17
,
90

difficulty of,
89

fifth proposition,
58
,
63–68

first proposition,
60–63
,
61(fig.)

first twenty-eight propositions,
122

forty-seventh proposition,
68–75

forty-sixth proposition,
73

fourth proposition,
26–27
,
36
,
39
,
67
,
68
,
74

sixteenth proposition,
83–84
,
84(fig.)
,
84(n)
,
85(fig.)
,
86

third proposition,
66

thirty-second proposition,
119

twenty-ninth proposition,
118
,
155

twenty-seventh proposition,
80–90
,
81(fig.)
,
84(n)
,
86(fig.)

Pseudosphere,
132–133
,
132(fig.)

Ptolemy I,
5

Ptolemy Soter,
58
,
119

Pyramids,
11
,
12

Pythagoreans,
12
,
100

Pythagorean theorem,
68–75
,
72(fig.)
,
100

algebraic equation of,
96

and parallel postulate,
119

Quadrilateral figures,
160
,
161

Railroads,
4
,
141

Ratios,
94
,
100
,
101
,
112–113

Rectangles,
7
,
96

Rectilinear figures,
60
,
160

Reductio ad absurdum
,
77
,
83–87

Reflection (in planes),
37
,
68
,
143
,
144

Relativity and Geometry
(Torretti),
39

Relativity theory,
118

Renaissance,
8
,
141
.
See also
Arab renaissance

BOOK: The King of Infinite Space
10.9Mb size Format: txt, pdf, ePub
ads

Other books

A Splash of Hope by Charity Parkerson
Moving Mars by Greg Bear
The Weight of Honor by Morgan Rice
The Salt Maiden by Colleen Thompson
Afternoon of the Elves by Janet Taylor Lisle
Magic's Song by Genia Avers
As the Sparks Fly Upward by Gilbert Morris


readsbookonline.com Copyright 2016 - 2024