Read Surely You're Joking, Mr. Feynman! Online
Authors: Richard Feynman
I also got the stannous hydroxide to dissolve in water by adding a little bit of hydrochloric acid–something I remembered from a college chemistry course–so a step that used to take _hours_ now took about five minutes.
My experiments were always being interrupted by the salesman, who would come back with some plastic from a prospective customer. I’d have all these bottles lined up, with everything marked, when all of a sudden, “You gotta stop the experiment to do a ’super job’ for the sales department!” So, a lot of experiments had to be started more than once.
One time we got into one hell of a lot of trouble. There was some artist who was trying to make a picture for the cover of a magazine about automobiles. He had very carefully built a wheel out of plastic, and somehow or other this salesman had told him we could plate anything, so the artist wanted us to metal-plate the hub, so it would be a shiny, silver hub. The wheel was made of a new plastic that we didn’t know very well how to plate–the fact is, the salesman never knew what we _could_ plate, so he was always promising things–and it didn’t work the first time. So, to fix it up we had to get the old silver off, and we couldn’t get it off easily. I decided to use concentrated nitric acid on it, which took the silver off all right, but also made pits and holes in the plastic. We were really in hot water _that_ time! In fact, we had lots of “hot water” experiments.
The other fellas in the company decided we should run advertisements in _Modern Plastics_ magazine. A few things we metal-plated were very pretty. They looked good in the advertisements. We also had a few things out in a showcase in front, for prospective customers to look at, but nobody could pick up the things in the advertisements or in the showcase to see how well the plating stayed on. Perhaps some of them were, in fact, pretty good jobs. But they were made specially; they were not regular products.
Right after I left the company at the end of the summer to go to Princeton, they got a good offer from somebody who wanted to metal-plate plastic pens. Now people could have silver pens that were light, and easy, and cheap. The pens immediately sold, all over, and it was rather exciting to see people walking around everywhere with these pens–and you knew where they came from.
But the company hadn’t had much experience with the material–or perhaps with the filler that was used in the plastic (most plastics aren’t pure; they have a “filler,” which in those days wasn’t very well controlled)–and the darn things would develop a blister. When you have something in your hand that has a little blister that starts to peel, you can’t help fiddling with it. So everybody was fiddling with all the peelings coming off the pens.
Now the company had this _emergency_ problem to fix the pens, and my pal decided he needed a big microscope, and so on. He didn’t know what he was going to look at, or why, and it cost his company a lot of money for this fake research. The result was, they had trouble: They never solved the problem, and the company failed, because their first big job was such a failure.
A few years later I was in Los Alamos, where there was a man named Frederic de Hoffman, who was a sort of scientist; but more, he was also very good at administrating. Not highly trained, he liked mathematics, and worked very hard; he compensated for his lack of training by hard work. Later he became the president or vice president of General Atomics and he was a big industrial character after that. But at the time he was just a very energetic, open-eyed, enthusiastic boy, helping along with the Project as best he could.
One day we were eating at the Fuller Lodge, and he told me he had been working in England before coming to Los Alamos.
“What kind of work were you doing there?” I asked.
“I was working on a process for metal-plating plastics. I was one of the guys in the laboratory.”
“How did it go?”
“It was going along pretty well, but we had our problems.”
“Oh?”
“Just as we were beginning to develop our process, there was a company in New York . . .”
“_What_ company in New York?”
“It was called the Metaplast Corporation. They were developing further than we were.”
“How could you tell?”
“They were advertising all the time in _Modern Plastics_ with full-page advertisements showing all the things they could plate, and we realized that they were further along than we were.”
“Did you have any stuff from them?”
“No, but you could tell from the advertisements that they were way ahead of what we could do. Our process was pretty good, but it was no use trying to compete with an American process like that.”
“How many chemists did you have working in the lab?”
“We had six chemists working.”
“How many chemists do you think the Metaplast Corporation had?”
“Oh! They must have had a _real_ chemistry department!”
“Would you describe for me what you think the chief research chemist at the Metaplast Corporation might look like, and how his laboratory might work?”
“I would guess they must have twenty-five or fifty chemists, and the chief research chemist has his own office–special, with glass. You know, like they have in the movies– guys coming in all the time with research projects that they’re doing, getting his advice, and rushing off to do more research, people coming in and out all the time. With twenty-five or fifty chemists, how the hell could we compete with them?”
“You’ll be interested and amused to know that you are now talking to the chief research chemist of the Metaplast Corporation, whose staff consisted of one bottle-washer!”
The Princeton Years
————————————
“Surely You’re Joking, Mr. Feynman!”
————————————
When I was an undergraduate at MIT I loved it. I thought it was a great place, and I wanted to go to graduate school there too, of course. But when I went to Professor Slater and told him of my intentions, he said, “We won’t let you in here.”
I said, “What?”
Slater said, “Why do you think you should go to graduate school at MIT?”
“Because MIT is the best school for science in the country.”
“You _think_ that?”
“Yeah.”
“That’s why you should go to some other school. You should find out how the rest of the world is.”
So I decided to go to Princeton. Now Princeton had a certain aspect of elegance. It was an imitation of an English school, partly. So the guys in the fraternity, who knew my rather rough, informal manners, started making remarks like “Wait till they find out who they’ve got coming to Princeton! Wait till they see the mistake they made!” So I decided to try to be nice when I got to Princeton.
My father took me to Princeton in his car, and I got my room, and he left. I hadn’t been there an hour when I was met by a man: “I’m the Mahstah of Residences heah, and I should like to tell you that the Dean is having a Tea this aftanoon, and he should like to have all of you come. Perhaps you would be so kind as to inform your roommate, Mr. Serette.”
That was my introduction to the graduate “College” at Princeton, where all the students lived. It was like an imitation Oxford or Cambridge–complete with accents (the master of residences was a professor of “French littrachaw”). There was a porter downstairs, everybody had nice rooms, and we ate all our meals together, wearing academic gowns, in a great hall which had stained-glass windows.
So the very afternoon I arrived in Princeton I’m going to the dean’s tea, and I didn’t even know what a “tea” was, or why! I had no social abilities whatsoever; I had no experience with this sort of thing.
So I come up to the door, and there’s Dean Eisenhart, greeting the new students: “Oh, you’re Mr. Feynman,” he says. “We’re glad to have you.” So that helped a little, because he recognized me, somehow.
I go through the door, and there are some ladies, and some girls, too. It’s all very formal and I’m thinking about where to sit down and should I sit next to this girl, or not, and how should I behave, when I hear a voice behind me.
“Would you like cream or lemon in your tea, Mr. Feynman?” It’s Mrs. Eisenhart, pouring tea.
“I’ll have both, thank you,” I say, still looking for where I’m going to sit, when suddenly I hear “Heh-heh-heh-heh-heh. Surely you’re _joking_, Mr. Feynman.”
Joking? Joking? What the hell did I just say? Then I realized what I had done. So that was my first experience with this tea business.
Later on, after I had been at Princeton longer, I got to understand this “Heh-heh-heh-heh-heh.” In fact it was at that first tea, as I was leaving, that I realized it meant “You’re making a social error.” Because the _next_ time I heard this same cackle, “Heh-heh-heh-heh-heh,” from Mrs. Eisenhart, somebody was kissing her hand as he left.
Another time, perhaps a year later, at another tea, I was talking to Professor Wildt, an astronomer who had worked out some theory about the clouds on Venus. They were supposed to be formaldehyde (it’s wonderful to know what we once worried about) and he had it all figured out, how the formaldehyde was precipitating, and so on. It was extremely interesting. We were talking about all this stuff, when a little lady came up and said, “Mr. Feynman, Mrs. Eisenhart would like to see you.”
“OK, just a minute . . .” and I kept talking to Wildt.
The little lady came back again and said, “Mr. _Feynman_, Mrs. Eisenhart would like to see you.”
“OK, OK!” and I go over to Mrs. Eisenhart, who’s pouring tea.
“Would you like to have some coffee or tea, Mr. Feynman?”
“Mrs. So-and-so says you wanted to talk to me.”
“Heh-heh-heh-heh-heh. Would you like to have _coffee_, or _tea_, Mr. Feynman?”
“Tea,” I said, “thank you.”
A few moments later Mrs. Eisenhart’s daughter and a schoolmate came over, and we were introduced to each other. The whole idea of _this_ “heh-heh-heh” was: Mrs. Eisenhart didn’t want to talk to me, she wanted me over there getting tea when her daughter and friend came over, so they would have someone to talk to. That’s the way it worked. By that time I knew what to do when I heard “Heh-heh-heh-heh-heh.” I didn’t say, “What do you mean, ‘Heh-heh-heh-heh-heh’?”; I knew the “heh-heh-heh” meant “error,” and I’d better get it straightened out.
Every night we wore academic gowns to dinner. The first night it scared the life out of me, because I didn’t like formality. But I soon realized that the gowns were a great advantage. Guys who were out playing tennis could rush into their room, grab their academic gown, and put it on. They didn’t have to take time off to change their clothes or take a shower. So underneath the gowns there were bare arms, T-shirts, everything. Furthermore, there was a rule that you never cleaned the gown, so you could tell a first-year man from a second-year man, from a third-year man, from a pig! You never cleaned the gown and you never repaired it, so the first-year men had very nice, relatively clean gowns, but by the time you got to the third year or so, it was nothing but some kind of cardboard thing on your shoulders with tatters hanging down from it.
So when I got to Princeton, I went to that tea on Sunday afternoon and had dinner that evening in an academic gown at the “College.” But on Monday, the first thing I wanted to do was to see the cyclotron.
MIT had built a new cyclotron while I was a student there, and it was just _beautiful_! The cyclotron itself was in one room, with the controls in another room. It was beautifully engineered. The wires ran from the control room to the cyclotron underneath in conduits, and there was a whole console of buttons and meters. It was what I would call a gold-plated cyclotron.
Now I had read a lot of papers on cyclotron experiments, and there weren’t many from MIT. Maybe they were just starting. But there were lots of results from places like Cornell, and Berkeley, and above all, Princeton. Therefore what I really wanted to see, what I was looking forward to, was the PRINCETON CYCLOTRON. That must be _something!_
So first thing on Monday, I go into the physics building and ask, “Where is the cyclotron–which building?”
“It’s downstairs, in the basement–at the end of the hall.”
In the _basement_? It was an old building. There was no room in the basement for a cyclotron. I walked down to the end of the hall, went through the door, and in ten seconds I learned why Princeton was right for me–the best place for me to go to school. In this room there were wires strung _all over the place!_ Switches were hanging from the wires, cooling water was dripping from the valves, the room was _full_ of stuff, all out in the open. Tables piled with tools were everywhere; it was the most godawful mess you ever saw. The whole cyclotron was there in one room, and it was complete, absolute chaos!
It reminded me of my lab at home. Nothing at MIT had ever reminded me of my lab at home. I suddenly realized why Princeton was getting results. They were working with the instrument. They _built_ the instrument; they knew where everything was, they knew how everything worked, there was no engineer involved, except maybe he was working there too. It was much smaller than the cyclotron at MIT, and “gold-plated”?–it was the exact opposite. When they wanted to fix a vacuum, they’d drip glyptal on it, so there were drops of glyptal on the floor. It was wonderful! Because they _worked_ with it. They didn’t have to sit in another room and push buttons! (Incidentally, they had a fire in that room, because of all the chaotic mess that they had–too many wires–and it destroyed the cyclotron. But I’d better not tell about that!)
(When I got to Cornell I went to look at the cyclotron there. This cyclotron hardly required a room: It was about a yard across–the diameter of the whole thing. It was the world’s smallest cyclotron, hut they had got fantastic results. They had all kinds of special techniques and tricks. If they wanted to change something in the “D’s”–the D-shaped half circles that the particles go around–they’d take a screwdriver, and remove the D’s by hand, fix them, and put them back. At Princeton it was a lot harder, and at MIT you had to take a crane that came rolling across the ceiling, lower the hooks, and it was a _hellllll_ of a job.)