Surely You're Joking, Mr. Feynman! (2 page)

He says, “When I turn it on it makes a noise, and after a while the noise stops and everything’s all right, but I don’t like the noise at the beginning.”

I think to myself: “What the hell! If he hasn’t got any money, you’d think he could stand a little noise for a while.”

And all the time, on the way to his house, he’s saying things like, “Do you know anything about radios? How do you know about radios–you’re just a little boy!”

He’s putting me down the whole way, and I’m thinking, “So what’s the matter with him? So it makes a little noise.”

But when we got there I went over to the radio and turned it on. Little noise? _My God!_ No wonder the poor guy couldn’t stand it. The thing began to roar and wobble–WUH BUH BUH BUH BUH–A _tremendous_ amount of noise. Then it quieted down and played correctly. So I started to think: “How can that happen?”

I start walking back and forth, thinking, and I realize that one way it can happen is that the tubes are heating up in the wrong order–that is, the amplifier’s all hot, the tubes are ready to go, and there’s nothing feeding in, or there’s some back circuit feeding in, or something wrong in the beginning part–the HF part–and therefore it’s making a lot of noise, picking up something. And when the RF circuit’s finally going, and the grid voltages are adjusted, everything’s all right.

So the guy says, “What are you doing? You come to fix the radio, but you’re only walking back and forth!”

I say, “I’m thinking!” Then I said to myself, “All right, take the tubes out, and reverse the order completely in the set.” (Many radio sets in those days used the same tubes in different places–212’s, I think they were, or 212-A’s.) So I changed the tubes around, stepped to the front of the radio, turned the thing on, and it’s as quiet as a lamb: it waits until it heats up, and then plays perfectly–no noise.

When a person has been negative to you, and then you do something like that, they’re usually a hundred percent the other way, kind of to compensate. He got me other jobs, and kept telling everybody what a tremendous genius I was, saying, “He fixes radios by _thinking_!” The whole idea of thinking, to fix a radio–a little boy stops and thinks, and figures out how to do it–he never thought that was possible.

Radio circuits were much easier to understand in those days because everything was out in the open. After you took the set apart (it was a big problem to find the right screws), you could see this was a resistor, that’s a condenser, here’s a this, there’s a that; they were all labeled. And if wax had been dripping from the condenser, it was too hot and you could tell that the condenser was burned out. If there was charcoal on one of the resistors you knew where the trouble was. Or, if you couldn’t tell what was the matter by looking at it, you’d test it with your voltmeter and see whether voltage was coming through. The sets were simple, the circuits were not complicated. The voltage on the grids was always about one and a half or two volts and the voltages on the plates were one hundred or two hundred, DC. So it wasn’t hard for me to fix a radio by understanding what was going on inside, noticing that something wasn’t working right, and fixing it.

Sometimes it took quite a while. I remember one particular time when it took the whole afternoon to find a burnedout resistor that was not apparent. That particular time it happened to be a friend of my mother, so I _had_ time-there was nobody on my back saying, “What are you doing?” Instead, they were saying, “Would you like a little milk, or some cake?” I finally fixed it because I had, and still have, persistence. Once I get on a puzzle, I can’t get off. If my mother’s friend had said, “Never mind, it’s too much work,” I’d have blown my top, because I want to beat this damn thing, as long as I’ve gone this far. I can’t just leave it after I’ve found out so much about it. I have to keep going to find out ultimately what is the matter with it in the end.

That’s a puzzle drive. It’s what accounts for my wanting to decipher Mayan hieroglyphics, for trying to open safes. I remember in high school, during first period a guy would come to me with a puzzle in geometry, or something which had been assigned in his advanced math class. I wouldn’t stop until I figured the damn thing out–it would take me fifteen or twenty minutes. But during the day, other guys would come to me with the same problem, and I’d do it for them in a flash. So for one guy, to do it took me twenty minutes, while there were five guys who thought I was a super-genius.

So I got a fancy reputation. During high school every puzzle that was known to man must have come to me. Every damn, crazy conundrum that people had invented, I knew. So when I got to MIT there was a dance, and one of the seniors had his girlfriend there, and she knew a lot of puzzles, and he was telling her that I was pretty good at them. So during the dance she came over to me and said, “They say you’re a smart guy, so here’s one for you: A man has eight cords of wood to chop . . .”

And I said, “He starts by chopping every other one in three parts,” because I had heard that one.

Then she’d go away and come back with another one, and I’d always know it.

This went on for quite a while, and finally, near the end of the dance, she came over, looking as if she was going to get me for sure this time, and she said, “A mother and daughter are traveling to Europe . . .”

“The daughter got the bubonic plague.”

She collapsed! That was hardly enough clues to get the answer to that one: It was the long story about how a mother and daughter stop at a hotel and stay in separate rooms, and the next day the mother goes to the daughter’s room and there’s nobody there, or somebody else is there, and she says, “Where’s my daughter?” and the hotel keeper says, “What daughter?” and the register’s got only the mother’s name, and so on, and so on, and there’s a big mystery as to what happened. The answer is, the daughter got bubonic plague, and the hotel, not wanting to have to close up, spirits the daughter away, cleans up the room, and erases all evidence of her having been there. It was a long tale, but I had heard it, so when the girl started out with, “A mother and daughter are traveling to Europe,” I knew one thing that started that way, so I took a flying guess, and got it.

We had a thing at high school called the algebra team, which consisted of five kids, and we would travel to different schools as a team and have competitions. We would sit in one row of seats and the other team would sit in another row. A teacher, who was running the contest, would take out an envelope, and on the envelope it says “forty-five seconds.” She opens it up, writes the problem on the blackboard, and says, “Go!”–so you really have more than forty-five seconds because while she’s writing you can think. Now the game was this: You have a piece of paper, and on it you can write anything, you can do anything. The only thing that counted was the answer. If the answer was “six books,” you’d have to write “6,” and put a big circle around it. If what was in the circle was right, you won; if it wasn’t, you lost.

One thing was for sure: It was practically impossible to do the problem in any conventional, straightforward way, like putting “A is the number of red books, B is the number of blue books,” grind, grind, grind, until you get “six books.” That would take you fifty seconds, because the people who set up the timings on these problems had made them all a trifle short. So you had to think, “Is there a way to see it?” Sometimes you could see it in a flash, and sometimes you’d have to invent another way to do it and then do the algebra as fast as you could. It was wonderful practice, and I got better and better, and I eventually got to be the head of the team. So I learned to do algebra very quickly, and it came in handy in college. When we had a problem in calculus, I was very quick to see where it was going and to do the algebra–fast.

Another thing I did in high school was to invent problems and theorems. I mean, if I were doing any mathematical thing at all, I would find some practical example for which it would be useful. I invented a set of right-triangle problems. But instead of giving the lengths of two of the sides to find the third, I gave the difference of the two sides. A typical example was: There’s a flagpole, and there’s a rope that comes down from the top. When you hold the rope straight down, it’s three feet longer than the pole, and when you pull the rope out tight, it’s five feet from the base of the pole. How high is the pole?

I developed some equations for solving problems like that, and as a result I noticed some connection–perhaps it was sin2 + cos2 = 1–that reminded me of trigonometry. Now, a few years earlier, perhaps when I was eleven or twelve, I had read a book on trigonometry that I had checked out from the library, but the book was by now long gone. I remembered only that trigonometry had something to do with relations between sines and cosines. So I began to work out all the relations by drawing triangles, and each one I proved by myself. I also calculated the sine, cosine, and tangent of every five degrees, starting with the sine of five degrees as given, by addition and half-angle formulas that I had worked out.

A few years later, when we studied trigonometry in school, I still had my notes and I saw that my demonstrations were often different from those in the book. Sometimes, for a thing where I didn’t notice a simple way to do it, I went all over the place till I got it. Other times, my way was most clever–the standard demonstration in the book was much more complicated! So sometimes I had ‘em heat, and sometimes it was the other way around.

While I was doing all this trigonometry, I didn’t like the symbols for sine, cosine, tangent, and so on. To me, “sin f” looked like s times i times n times f! So I invented another symbol, like a square root sign, that was a sigma with a long arm sticking out of it, and I put the f underneath. For the tangent it was a tau with the top of the tau extended, and for the cosine I made a kind of gamma, but it looked a little bit like the square root sign.

Now the inverse sine was the same sigma, but left-to-right reflected so that it started with the horizontal line with the value underneath, and then the sigma. _That_ was the inverse sine, NOT sink f–that was crazy! They had that in books! To me, sin_i meant i/sine, the reciprocal. So my symbols were better.

I didn’t like f(x)–that looked to me like f times x. I also didn’t like dy/dx–you have a tendency to cancel the d’s–so I made a diflerent sign, something like an & sign. For logarithms it was a big L extended to the right, with the thing you take the log of inside, and so on.

I thought my symbols were just as good, if not better, than the regular symbols–it doesn’t make any difference _what_ symbols you use–but I discovered later that it _does_ make a difference. Once when I was explaining something to another kid in high school, without thinking I started to make these symbols, and he said, “What the hell are those?” I realized then that if I’m going to talk to anybody else, I’ll have to use the standard symbols, so I eventually gave up my own symbols.

I had also invented a set of symbols for the typewriter, like FORTRAN has to do, so I could type equations. I also fixed typewriters, with paper clips and rubber bands (the rubber bands didn’t break down like they do here in Los Angeles), hut I wasn’t a professional repairman; I’d just fix them so they would work. But the whole problem of discovering what was the matter, and figuring out what you have to do to fix it–that was interesting to me, like a puzzle.

————
String Beans
————

I must have been seventeen or eighteen when I worked one summer in a hotel run by my aunt. I don’t know how much I got–twenty-two dollars a month, I think–and I alternated eleven hours one day and thirteen the next as a desk clerk or as a busboy in the restaurant. And during the afternoon, when you were desk clerk, you had to bring milk up to Mrs. D–, an invalid woman who never gave us a tip. That’s the way the world was: You worked long hours and got nothing for it, every day.

This was a resort hotel, by the beach, on the outskirts of New York City. The husbands would go to work in the city and leave the wives behind to play cards, so you would always have to get the bridge tables out. Then at night the guys would play poker, so you’d get the tables ready for them–clean out the ashtrays and so on. I was always up until late at night, like two o’clock, so it really was thirteen and eleven hours a day.

There were certain things I didn’t like, such as tipping. I thought we should be paid more, and not have to have any tips. But when I proposed that to the boss, I got nothing but laughter. She told everybody, “Richard doesn’t want his tips, hee, hee, hee; he doesn’t want his tips, ha, ha, ha.” The world is full of this kind of dumb smart-alec who doesn’t understand anything.

Anyway, at one stage there was a group of men who, when they’d come back from working in the city, would right away want ice for their drinks. Now the other guy working with me had really been a desk clerk. He was older than I was, and a lot more professional. One time he said to me, “Listen, we’re always bringing ice up to that guy Ungar and he never gives us a tip–not even ten cents. Next time, when they ask for ice, just don’t do a damn thing. Then they’ll call you back, and when they call you back, you say, ‘Oh, I’m sorry. I forgot. We’re all forgetful sometimes.’”

So I did it, and Ungar gave me fifteen cents! But now, when I think back on it, I realize that the other desk clerk, the professional, had _really_ known what to do–tell the _other_ guy to take the risk of getting into trouble. He put me to the job of training this fella to give tips. _He_ never said anything; he made _me_ do it!

I had to clean up tables in the dining room as a busboy. You pile all this stuff from the tables on to a tray at the side, and when it gets high enough you carry it into the kitchen. So you get a new tray, right? You _should_ do it in two steps–take the old tray away, and put in a new one-but I thought, “I’m going to do it in one step.” So I tried to slide the new tray under, and pull the old tray out at the same time, and it slipped–BANG! All the stuff went on the floor. And then, naturally, the question was, “What were you doing? How did it fall?” Well, how could I explain that I was trying to invent a new way to handle trays?

Other books

Valentine's Rose by E. E. Burke
Any Duchess Will Do by Tessa Dare
Dear Master by Katie Greene
Ninja by John Man
Another Chance by Wayne, Ariadne
Spilled Blood by Freeman, Brian


readsbookonline.com Copyright 2016 - 2024