Read On The Origin Of Species Online

Authors: Charles Darwin

On The Origin Of Species (43 page)

The previous remarks on "single and multiple centres of creation" do not directly bear on another allied question,--namely whether all the individuals of the same species have descended from a single pair, or single hermaphrodite, or whether, as some authors suppose, from many individuals simultaneously created. With those organic beings which never intercross (if such exist), the species, on my theory, must have descended from a succession of improved varieties, which will never have blended with other individuals or varieties, but will have supplanted each other; so that, at each successive stage of modification and improvement, all the individuals of each variety will have descended from a single parent. But in the majority of cases, namely, with all organisms which habitually unite for each birth, or which often intercross, I believe that during the slow process of modification the individuals of the species will have been kept nearly uniform by intercrossing; so that many individuals will have gone on simultaneously changing, and the whole amount of modification will not have been due, at each stage, to descent from a single parent. To illustrate what I mean: our English racehorses differ slightly from the horses of every other breed; but they do not owe their difference and superiority to descent from any single pair, but to continued care in selecting and training many individuals during many generations.

Before discussing the three classes of facts, which I have selected as presenting the greatest amount of difficulty on the theory of "single centres of creation," I must say a few words on the means of dispersal.

MEANS OF DISPERSAL.

Sir C. Lyell and other authors have ably treated this subject. I can give here only the briefest abstract of the more important facts. Change of climate must have had a powerful influence on migration: a region when its climate was different may have been a high road for migration, but now be impassable; I shall, however, presently have to discuss this branch of the subject in some detail. Changes of level in the land must also have been highly influential: a narrow isthmus now separates two marine faunas; submerge it, or let it formerly have been submerged, and the two faunas will now blend or may formerly have blended: where the sea now extends, land may at a former period have connected islands or possibly even continents together, and thus have allowed terrestrial productions to pass from one to the other. No geologist will dispute that great mutations of level have occurred within the period of existing organisms. Edward Forbes insisted that all the islands in the Atlantic must recently have been connected with Europe or Africa, and Europe likewise with America. Other authors have thus hypothetically bridged over every ocean, and have united almost every island to some mainland. If indeed the arguments used by Forbes are to be trusted, it must be admitted that scarcely a single island exists which has not recently been united to some continent. This view cuts the Gordian knot of the dispersal of the same species to the most distant points, and removes many a difficulty: but to the best of my judgment we are not authorized in admitting such enormous geographical changes within the period of existing species. It seems to me that we have abundant evidence of great oscillations of level in our continents; but not of such vast changes in their position and extension, as to have united them within the recent period to each other and to the several intervening oceanic islands. I freely admit the former existence of many islands, now buried beneath the sea, which may have served as halting places for plants and for many animals during their migration. In the coral-producing oceans such sunken islands are now marked, as I believe, by rings of coral or atolls standing over them. Whenever it is fully admitted, as I believe it will some day be, that each species has proceeded from a single birthplace, and when in the course of time we know something definite about the means of distribution, we shall be enabled to speculate with security on the former extension of the land. But I do not believe that it will ever be proved that within the recent period continents which are now quite separate, have been continuously, or almost continuously, united with each other, and with the many existing oceanic islands. Several facts in distribution,--such as the great difference in the marine faunas on the opposite sides of almost every continent,--the close relation of the tertiary inhabitants of several lands and even seas to their present inhabitants,--a certain degree of relation (as we shall hereafter see) between the distribution of mammals and the depth of the sea,--these and other such facts seem to me opposed to the admission of such prodigious geographical revolutions within the recent period, as are necessitated on the view advanced by Forbes and admitted by his many followers. The nature and relative proportions of the inhabitants of oceanic islands likewise seem to me opposed to the belief of their former continuity with continents. Nor does their almost universally volcanic composition favour the admission that they are the wrecks of sunken continents;--if they had originally existed as mountain-ranges on the land, some at least of the islands would have been formed, like other mountain-summits, of granite, metamorphic schists, old fossiliferous or other such rocks, instead of consisting of mere piles of volcanic matter.

I must now say a few words on what are called accidental means, but which more properly might be called occasional means of distribution. I shall here confine myself to plants. In botanical works, this or that plant is stated to be ill adapted for wide dissemination; but for transport across the sea, the greater or less facilities may be said to be almost wholly unknown. Until I tried, with Mr. Berkeley's aid, a few experiments, it was not even known how far seeds could resist the injurious action of sea-water. To my surprise I found that out of 87 kinds, 64 germinated after an immersion of 28 days, and a few survived an immersion of 137 days. For convenience sake I chiefly tried small seeds, without the capsule or fruit; and as all of these sank in a few days, they could not be floated across wide spaces of the sea, whether or not they were injured by the salt-water. Afterwards I tried some larger fruits, capsules, etc., and some of these floated for a long time. It is well known what a difference there is in the buoyancy of green and seasoned timber; and it occurred to me that floods might wash down plants or branches, and that these might be dried on the banks, and then by a fresh rise in the stream be washed into the sea. Hence I was led to dry stems and branches of 94 plants with ripe fruit, and to place them on sea water. The majority sank quickly, but some which whilst green floated for a very short time, when dried floated much longer; for instance, ripe hazel-nuts sank immediately, but when dried, they floated for 90 days and afterwards when planted they germinated; an asparagus plant with ripe berries floated for 23 days, when dried it floated for 85 days, and the seeds afterwards germinated: the ripe seeds of Helosciadium sank in two days, when dried they floated for above 90 days, and afterwards germinated. Altogether out of the 94 dried plants, 18 floated for above 28 days, and some of the 18 floated for a very much longer period. So that as 64/87 seeds germinated after an immersion of 28 days; and as 18/94 plants with ripe fruit (but not all the same species as in the foregoing experiment) floated, after being dried, for above 28 days, as far as we may infer anything from these scanty facts, we may conclude that the seeds of 14/100 plants of any country might be floated by sea-currents during 28 days, and would retain their power of germination. In Johnston's Physical Atlas, the average rate of the several Atlantic currents is 33 miles per diem (some currents running at the rate of 60 miles per diem); on this average, the seeds of 14/100 plants belonging to one country might be floated across 924 miles of sea to another country; and when stranded, if blown to a favourable spot by an inland gale, they would germinate.

Subsequently to my experiments, M. Martens tried similar ones, but in a much better manner, for he placed the seeds in a box in the actual sea, so that they were alternately wet and exposed to the air like really floating plants. He tried 98 seeds, mostly different from mine; but he chose many large fruits and likewise seeds from plants which live near the sea; and this would have favoured the average length of their flotation and of their resistance to the injurious action of the salt-water. On the other hand he did not previously dry the plants or branches with the fruit; and this, as we have seen, would have caused some of them to have floated much longer. The result was that 18/98 of his seeds floated for 42 days, and were then capable of germination. But I do not doubt that plants exposed to the waves would float for a less time than those protected from violent movement as in our experiments. Therefore it would perhaps be safer to assume that the seeds of about 10/100 plants of a flora, after having been dried, could be floated across a space of sea 900 miles in width, and would then germinate. The fact of the larger fruits often floating longer than the small, is interesting; as plants with large seeds or fruit could hardly be transported by any other means; and Alph. de Candolle has shown that such plants generally have restricted ranges.

But seeds may be occasionally transported in another manner. Drift timber is thrown up on most islands, even on those in the midst of the widest oceans; and the natives of the coral-islands in the Pacific, procure stones for their tools, solely from the roots of drifted trees, these stones being a valuable royal tax. I find on examination, that when irregularly shaped stones are embedded in the roots of trees, small parcels of earth are very frequently enclosed in their interstices and behind them,--so perfectly that not a particle could be washed away in the longest transport: out of one small portion of earth thus COMPLETELY enclosed by wood in an oak about 50 years old, three dicotyledonous plants germinated: I am certain of the accuracy of this observation. Again, I can show that the carcasses of birds, when floating on the sea, sometimes escape being immediately devoured; and seeds of many kinds in the crops of floating birds long retain their vitality: peas and vetches, for instance, are killed by even a few days' immersion in sea-water; but some taken out of the crop of a pigeon, which had floated on artificial salt-water for 30 days, to my surprise nearly all germinated.

Living birds can hardly fail to be highly effective agents in the transportation of seeds. I could give many facts showing how frequently birds of many kinds are blown by gales to vast distances across the ocean. We may I think safely assume that under such circumstances their rate of flight would often be 35 miles an hour; and some authors have given a far higher estimate. I have never seen an instance of nutritious seeds passing through the intestines of a bird; but hard seeds of fruit will pass uninjured through even the digestive organs of a turkey. In the course of two months, I picked up in my garden 12 kinds of seeds, out of the excrement of small birds, and these seemed perfect, and some of them, which I tried, germinated. But the following fact is more important: the crops of birds do not secrete gastric juice, and do not in the least injure, as I know by trial, the germination of seeds; now after a bird has found and devoured a large supply of food, it is positively asserted that all the grains do not pass into the gizzard for 12 or even 18 hours. A bird in this interval might easily be blown to the distance of 500 miles, and hawks are known to look out for tired birds, and the contents of their torn crops might thus readily get scattered. Mr. Brent informs me that a friend of his had to give up flying carrier-pigeons from France to England, as the hawks on the English coast destroyed so many on their arrival. Some hawks and owls bolt their prey whole, and after an interval of from twelve to twenty hours, disgorge pellets, which, as I know from experiments made in the Zoological Gardens, include seeds capable of germination. Some seeds of the oat, wheat, millet, canary, hemp, clover, and beet germinated after having been from twelve to twenty-one hours in the stomachs of different birds of prey; and two seeds of beet grew after having been thus retained for two days and fourteen hours. Freshwater fish, I find, eat seeds of many land and water plants: fish are frequently devoured by birds, and thus the seeds might be transported from place to place. I forced many kinds of seeds into the stomachs of dead fish, and then gave their bodies to fishing-eagles, storks, and pelicans; these birds after an interval of many hours, either rejected the seeds in pellets or passed them in their excrement; and several of these seeds retained their power of germination. Certain seeds, however, were always killed by this process.

Although the beaks and feet of birds are generally quite clean, I can show that earth sometimes adheres to them: in one instance I removed twenty-two grains of dry argillaceous earth from one foot of a partridge, and in this earth there was a pebble quite as large as the seed of a vetch. Thus seeds might occasionally be transported to great distances; for many facts could be given showing that soil almost everywhere is charged with seeds. Reflect for a moment on the millions of quails which annually cross the Mediterranean; and can we doubt that the earth adhering to their feet would sometimes include a few minute seeds? But I shall presently have to recur to this subject.

As icebergs are known to be sometimes loaded with earth and stones, and have even carried brushwood, bones, and the nest of a land-bird, I can hardly doubt that they must occasionally have transported seeds from one part to another of the arctic and antarctic regions, as suggested by Lyell; and during the Glacial period from one part of the now temperate regions to another. In the Azores, from the large number of the species of plants common to Europe, in comparison with the plants of other oceanic islands nearer to the mainland, and (as remarked by Mr. H. C. Watson) from the somewhat northern character of the flora in comparison with the latitude, I suspected that these islands had been partly stocked by ice-borne seeds, during the Glacial epoch. At my request Sir C. Lyell wrote to M. Hartung to inquire whether he had observed erratic boulders on these islands, and he answered that he had found large fragments of granite and other rocks, which do not occur in the archipelago. Hence we may safely infer that icebergs formerly landed their rocky burthens on the shores of these mid-ocean islands, and it is at least possible that they may have brought thither the seeds of northern plants.

Other books

The Face by Dean Koontz
Redoubt by Mercedes Lackey
Vampire Uprising by Marcus Pelegrimas
The Memory Garden by Mary Rickert
Saint in New York by Leslie Charteris
Look Who's Back by Timur Vermes
Dancing in the Rain by Amanda Harte
Uncle John’s Curiously Compelling Bathroom Reader by Bathroom Readers’ Institute
The Ribbajack by Brian Jacques
Liz Carlyle - 06 - Rip Tide by Stella Rimington


readsbookonline.com Copyright 2016 - 2024