Cuando el
Viking
se posó sobre Marte en 1976, husmeó la atmósfera y detectó muchos de los gases presentes en la atmósfera terrestre —dióxido de carbono, por ejemplo— y una carencia de otros que son predominantes en nuestro planeta, como el ozono. Más aún, se determinó su composición isotópica y, en muchos casos, resultó ser diferente de la de la atmósfera terrestre. Habíamos descubierto la signatura de la atmósfera marciana.
Se divulgó entonces un hecho curioso. En la capa de hielo antártico, sobre las nieves congeladas, se habían descubierto meteoritos (rocas procedentes del espacio), algunos antes de la época del
Viking;
otros, después. Todos habían caído en la Tierra antes de la misión
Viking,
en algunos casos hace decenas de miles de años. No fue difícil localizarlos en el blanco casquete helado de la Antártida. En su mayor parte fueron enviados a lo que durante el proyecto
Apolo
había sido el Laboratorio de Recepción Lunar de Houston.
Por entonces el presupuesto de la NASA estaba muy menguado, y durante años aquellos meteoritos no merecieron siquiera un vistazo preliminar. Unos cuantos resultaron ser fragmentos lunares lanzados al espacio por un meteorito o cometa que chocó contra nuestro satélite. Uno o dos procedían de Venus. Lo más sorprendente fue que varios de ellos, a juzgar por la signatura atmosférica impresa en sus minerales, eran originarios de Marte.
En 1995-1996, científicos del Centro Johnson de Vuelos Espaciales de la NASA estudiaron por fin uno de los meteoritos —el ALH84001— de procedencia marciana. No parecía en modo alguno extraordinario; tenía todo el aspecto de una patata pardusca. Al examinar su microquímica se descubrieron ciertas especies moleculares orgánicas, principalmente hidrocarburos aromáticos policíclicos (HAP). No se trata de moléculas especialmente notables; su fórmula estructural se asemeja a los azulejos hexagonales de un cuarto de baño, y poseen un átomo de carbono en cada vértice. Se han detectado tanto en meteoritos ordinarios como en el polvo interestelar, y se sospecha su presencia en Júpiter y en Titán. De ninguna manera son indicio de vida. Ahora bien, los HAP del meteorito antártico estaban en la matriz de la roca y no sólo en la superficie, lo que indicaba que no se trataba de contaminación por polvo terrestre (o por los gases de escape de los automóviles) sino que eran intrínsecos. Si bien la presencia de HAP en meteoritos incontaminados no implica vida, también se encontraron minerales a veces asociados con ésta. El descubrimiento más sorprendente, sin embargo, fue el de lo que algunos científicos denominan nanofósiles, pequeñas esferas conectadas de un modo que recuerda las colonias bacterianas terrestres. Ahora bien, ¿podemos tener la seguridad de que no hay minerales terrestres o marcianos que tengan formas similares? ¿Es suficiente la evidencia? Respecto de los ovnis, he recalcado durante años que las afirmaciones extraordinarias requieren evidencias extraordinarias. La evidencia de vida en Marte aún no lo es.
Se trata, no obstante, de un punto de partida que nos remite a otros meteoritos marcianos y a otras partes de éste en concreto. Sugiere asimismo la búsqueda en los bancos de hielo antárticos de meteoritos de naturaleza diferente. Nos indica que debemos investigar no sólo las rocas marcianas profundamente enterradas, sino también las más superficiales. Nos impulsa a reconsiderar los enigmáticos resultados de los experimentos biológicos del
Viking,
algunos de los cuales llevaron a unos pocos científicos a anunciar la presencia de vida. Nos anima a enviar naves espaciales a zonas específicas de Marte que podrían haber sido las últimas en enfriarse y desecarse. Se abre así todo un nuevo campo: el de la exobiología marciana.
Si tuviésemos la inmensa suerte de hallar un simple microbio en Marte, se daría la maravillosa circunstancia de dos planetas próximos que habrían albergado vida en la misma era arcaica. Es verdad que la vida pudo ser transportada de un mundo a otro por el impacto de un meteorito y no haberse originado de manera independiente. Podríamos comprobarlo examinando la química orgánica y la morfología de las formas de vida que descubramos. Tal vez la vida surgió en uno de los dos planetas, pero evolucionó separadamente en ambos. Nos hallaríamos entonces ante un ejemplo de varios miles de millones de años de evolución independiente, un tesoro biológico inaccesible por cualquier otra vía.
Si tenemos aún más suerte, hallaremos formas de vida realmente independientes. ¿Estará su material genético compuesto de ácidos nucleicos? ¿Poseerán un metabolismo basado en proteínas? ¿Qué código genético emplearán? Sean cuales fueren las respuestas a estas preguntas, la ciencia biológica entera saldrá ganando, pues en cualquier caso la implicación sería que la vida podría estar mucho más difundida de lo que la mayoría de los científicos creía. Con objeto de establecer una base sobre la que responder a estos interrogantes, muchas naciones están elaborando ambiciosos planes para enviar a Marte en las próximas décadas satélites robóticos, vehículos todo terreno, una nave capaz de penetrar el subsuelo y, hacia el 2005, una misión robotizada que traiga a la Tierra muestras de la superficie y el subsuelo marcianos.
2. ¿Es Titán un laboratorio para el estudio del origen de la vida?
Titán es la gran luna de Saturno, un mundo extraordinario con una atmósfera diez veces más densa que la de la Tierra, constituida principalmente por nitrógeno (como aquí) y metano (CH
4
). Las dos naves espaciales norteamericanas
Voyager
detectaron cierto número de moléculas orgánicas simples en su atmósfera (compuestos de carbono implicados en el origen de la vida en la Tierra). Este satélite se halla rodeado por una brumosa capa rojiza de propiedades idénticas a las de un sólido rojo parduzco creado en el laboratorio tras proporcionar energía a una atmósfera simulada de Titán. Al analizar la composición de ese material, encontramos muchos de los constituyentes esenciales de la vida en la Tierra. Dada la distancia a que Titán se halla del Sol, el agua que pueda haber allí tiene que estar congelada; uno puede pensar, pues, que no es comparable con la Tierra en la época en que apareció la vida en ella, pero los impactos cometarios ocasionales son capaces de fundir la superficie helada y, según parece, a lo largo de su historia de 4.500 millones de años cualquier punto de Titán ha permanecido bajo el agua durante más o menos un milenio por término medio. En el año 2004 la nave
Cassini
de la NASA llegará al sistema de Saturno transportando la sonda
Huygens,
construida por la Agencia Espacial Europea, la cual se hundirá lentamente en la atmósfera del gran satélite hasta alcanzar su enigmática superficie. Quizá sepamos entonces hasta dónde ha llegado Titán por el sendero de la vida.
3. ¿Hay vida inteligente en algún otro lugar?
Las ondas de radio se desplazan a la velocidad de la luz. Nada viaja más deprisa. Con la frecuencia adecuada atraviesan limpiamente el espacio interestelar y las atmósferas planetarias. Si el mayor radiotelescopio terrestre apuntase a un dispositivo equivalente en un planeta de otra estrella, aun separados por miles de años luz, ambos instrumentos podrían escucharse mutuamente. Por todas estas razones estamos utilizando radiotelescopios para ver si alguien intenta enviarnos un mensaje. Hasta ahora no hemos encontrado nada seguro, pero se han registrado «sucesos» asombrosos, señales que satisfacen todos los criterios para afirmar que son producto de una inteligencia extraterrestre, menos uno: minutos, meses o años más tarde, volvemos a dirigir el telescopio al mismo sector del cielo y la señal nunca se repite. El programa de búsqueda no ha hecho más que comenzar. Una exploración verdaderamente concienzuda exigirá una o dos décadas. Si al final se encuentra inteligencia extraterrestre, cambiará para siempre nuestra visión del universo y de nosotros mismos, y si no hallamos nada tras una búsqueda larga y sistemática, quizá podamos calibrar mejor la rareza y el valor de la vida en la Tierra. En cualquier caso, es indudable que la exploración vale la pena.
4. ¿Cuál es el origen y el destino del universo?
Para nuestro asombro, la astrofísica moderna está a punto de llegar a revelaciones fundamentales sobre el origen, la naturaleza y el destino del universo. Sabemos que éste se expande: todas las galaxias se alejan unas de otras en lo que se conoce como flujo de Hubble, uno de los tres testimonios principales de la enorme explosión que originó el universo (o al menos su encarnación presente). La gravedad de la Tierra es suficiente para hacer volver una piedra lanzada al aire, pero no un cohete a la velocidad de escape. Lo mismo es aplicable al universo: si contiene gran cantidad de materia, la gravedad ejercida por ésta acabará por frenar la expansión, y el universo en expansión se transformará en un universo en contracción; si no hay materia suficiente, la expansión proseguirá de manera indefinida. La cantidad estimada de materia presente en el universo no basta para frenar la expansión, pero hay razones para pensar que podría haber una enorme cantidad de materia oscura que no delataría su presencia emitiendo luz en beneficio de los astrónomos. Si la expansión del universo resulta ser sólo temporal, dejará paso en definitiva a un universo en contracción; de ser así, el universo podría pasar por un número infinito de expansiones y contracciones y ser infinitamente viejo. Un universo así no necesita haber sido creado. Siempre ha estado ahí. Por otro lado, si no bastase la materia existente para invertir la expansión, este hecho resultaría coherente con la idea de un universo creado de la nada. Éstas son cuestiones profundas y difíciles que cada cultura humana ha tratado de abordar a su manera, pero sólo ahora tenemos expectativas reales de encontrar algunas de las respuestas, y no por medio de suposiciones o historias, sino a través de observaciones auténticas, repetibles y comprobables.
Creo que existe una posibilidad razonable de que en la próxima década o la siguiente surjan revelaciones asombrosas en estos cuatro campos. Repito que hay muchas otras cuestiones en la astronomía moderna por las que pudiera haber optado, pero la predicción que puedo hacer ahora con seguridad plena es que los descubrimientos más sorprendentes serán aquellos que hoy ni siquiera podemos prever.
¡Qué maravilloso y sorprendente esquema tenemos aquí de la magnífica inmensidad del universo! ¡Tantos soles [...] tantas tierras...!
C
HRISTIAN
H
UYGENS
,
Nuevas conjeturas
concernientes a los mundos planetarios,
sus habitantes y producciones
(h. 1670)
E
N DICIEMBRE DE 1995
, una sonda espacial desprendida de la nave
Galileo
entró en la turbulenta y agitada atmósfera de Júpiter camino de su destrucción, pero alcanzó a transmitir información de lo que observaba mientras descendía. Cuatro naves anteriores habían examinado el planeta al cruzar por sus cercanías. Júpiter también había sido estudiado con telescopios emplazados en tierra y en el espacio. A diferencia de nuestro planeta, constituido principalmente por rocas y metales, Júpiter es sobre todo hidrógeno y helio, y su tamaño es tal que podría albergar un millar de Tierras. A grandes profundidades, la presión atmosférica es tan alta que los átomos pierden electrones y el hidrógeno se convierte en un metal caliente. Se considera que ésta es la razón de que Júpiter emita el doble de energía de la que recibe del Sol. Los vientos que sacudieron la sonda
Galileo
a la máxima profundidad que alcanzó probablemente no se debían a la luz solar, sino a la energía originada en el interior del planeta. En el centro mismo de Júpiter parece existir una masa de roca y hierro muchas veces mayor que la Tierra, rodeada por un inmenso océano de hidrógeno y helio. Llegar hasta el hidrógeno metálico —y mucho menos aún al núcleo rocoso— está más allá de la capacidad humana, al menos durante los próximos siglos o, quizá, milenios.
En el interior de Júpiter las presiones son tan grandes que es difícil imaginar que allí haya vida, por muy diferente que fuese de la nuestra. Unos cuantos científicos, yo entre ellos, hemos tratado de imaginar, sólo como distracción, una ecología capaz de evolucionar en la atmósfera de un planeta semejante a Júpiter, algo como los microbios y peces de los océanos terrestres. El origen de la vida puede ser difícil en semejante ambiente, pero ahora sabemos que los impactos de asteroides y cometas transfieren material superficial de unos mundos a otros, y hasta puede que algunos impactos en la historia arcaica de la Tierra trasladasen nuestra vida primigenia a Júpiter. Todo esto es, sin embargo, mera especulación.
Júpiter se encuentra a unas cinco unidades astronómicas del Sol. Una unidad astronómica (UA) es la distancia que separa la Tierra del Sol, unos 150 millones de kilómetros. Si no fuese por el calor interno y el efecto invernadero de la inmensa atmósfera joviana, las temperaturas serían allí del orden de 160 grados bajo cero, como efectivamente ocurre en la superficie de los satélites de Júpiter, lo que hace que la vida en ellos sea imposible.
Júpiter y la mayor parte de los otros planetas giran en torno al Sol en el mismo plano, como si estuviesen situados en surcos distintos de un disco de vinilo o compacto. ¿Por qué ocurre esto? ¿Por qué los planos orbitales no se inclinan en todos los ángulos? Isaac Newton, el genio matemático que comprendió antes que nadie cómo la gravedad determina los movimientos planetarios, se mostró sorprendido ante la ausencia de variación en los planos orbitales de los planetas y decidió que tuvo que ser Dios quien, al crear el Sistema Solar, situara todos los planetas en órbitas coplanarias.
Sin embargo, el matemático Pierre Simón, marqués de Laplace, y más tarde el famoso filósofo Immanuel Kant descubrieron cómo explicar este hecho sin necesidad de recurrir a la intervención divina. Irónicamente, se basaron en las leyes descubiertas por Newton. El razonamiento es como sigue: imaginemos una nube interestelar de gas y polvo en lenta rotación. Hay muchas nubes de este estilo. Si la densidad es lo bastante alta, la atracción gravitatoria mutua entre las partículas de la nube se impondrá al movimiento aleatorio interno y la nube comenzará a contraerse, con lo que cada vez girará más deprisa, como un patinador que cruza los brazos. El giro no retardará el colapso de la nube a lo largo del eje de rotación, pero sí en el plano principal de rotación. La nube, en principio irregular, acaba convirtiéndose en un disco. Así, los planetas formados a partir de este disco girarán aproximadamente en el mismo plano, sin intervención sobrenatural alguna valiéndose únicamente de las leyes de la física.