Figura 5.1
Ampliando secuencialmente una región del espacio, se pueden comprobar sus propiedades ultramicroscópicas. Los intentos de fusionar la relatividad general y la mecánica cuántica chocan con la violenta espuma cuántica que surge al nivel máximo de ampliación.
Al principio, cuando enfocamos estas regiones en primer plano, no sucede gran cosa; como vemos en los tres primeros niveles de ampliación en la Figura 5.1, la estructura del espacio mantiene la misma forma básica. Razonando desde un punto de vista puramente clásico, sería de esperar que esta imagen plácida y lisa del espacio se mantuviera siempre mientras vamos hacia escalas de longitud arbitrariamente pequeñas. Pero la mecánica cuántica cambia esta conclusión radicalmente.
Todo
está sometido a las fluctuaciones cuánticas inherentes al principio de incertidumbre incluso el campo gravitatorio—. Aunque el razonamiento clásico implica que el espacio vacío tiene un campo gravitatorio cero, la mecánica cuántica demuestra que es cero como promedio, pero que su valor real describe ondulaciones hacia arriba y hacia abajo debido a las fluctuaciones cuánticas. Además, el principio de incertidumbre nos dice que el tamaño de las ondulaciones del campo gravitatorio crece a medida que centramos nuestra atención en regiones del espacio más pequeñas. La mecánica cuántica demuestra que nada tiende a quedar arrinconado; el estrechamiento del enfoque espacial nos lleva a ondulaciones cada vez mayores.
Dado que los campos gravitatorios se caracterizan por su grado de curvatura, estas fluctuaciones cuánticas se manifiestan como distorsiones cada vez más violentas del espacio que los rodea. Vemos cómo emergen indicios de estas distorsiones en el cuarto nivel de ampliación en la Figura 5.1. Haciendo la prueba con escalas de distancias aún menores, como en el quinto nivel de la Figura 5.1, vemos que las ondulaciones aleatorias previstas por la mecánica cuántica en el campo gravitatorio se traducen en unos alabeos del espacio tan fuertes que éste deja de parecerse a un objeto geométrico ligeramente curvado, como en la analogía de la membrana de goma utilizada en la discusión que tuvo lugar en el capítulo 3. Al contrario, adopta la forma espumeante, turbulenta y retorcida que se observa en la parte superior de la figura. John Wheeler acuñó la expresión
espuma cuántica
para describir el frenesí que pone de manifiesto este examen ultramicroscópico del espacio (y el tiempo); describe un escenario del universo nada habitual en el que las nociones convencionales de izquierda y derecha, atrás y adelante, arriba y abajo (e incluso la de antes y después) pierden su significado. Es precisamente en estas escalas pequeñas donde nos encontramos con la incompatibilidad fundamental entre la relatividad general y la mecánica cuántica.
La noción de una geometría espacial lisa, que constituye el principio fundamental de la relatividad general, queda destruida por la violentas fluctuaciones del mundo cuántico a escalas de distancias pequeñas
. A escalas ultramicroscópicas, la característica principal de la mecánica cuántica —el principio de incertidumbre— está en conflicto directo con la característica fundamental de la relatividad general —el modelo geométrico liso del espacio— (y del espacio-tiempo).
En la práctica, este conflicto surge de una manera muy concreta. Los cálculos que unifican las ecuaciones de la relatividad general y las de la mecánica cuántica dan lugar siempre a la misma respuesta ridícula: el infinito. Como un golpe repentino en la muñeca, dado por un maestro de escuela de los viejos tiempos, una respuesta infinita es el modo que tiene la naturaleza para decirnos que estamos haciendo algo bastante erróneo.
[36]
Las ecuaciones de la relatividad general no pueden manejar el irritante frenesí de la espuma cuántica.
Sin embargo, obsérvese que, a medida que retrocedemos a distancias más ordinarias (siguiendo a la inversa la secuencia de los dibujos de la Figura 5.1), las ondulaciones aleatorias y violentas que se producen a pequeña escala se anulan mutuamente —de una forma muy parecida a lo que sucede cuando, por término medio, la cuenta bancaria de nuestro compulsivo prestatario no muestra ninguna evidencia de su compulsión— y para la estructura del universo vuelve a ser exacto el concepto de una forma geométrica lisa. Es como lo que se experimenta al mirar una imagen matricial de puntos: de lejos, los puntos que componen la imagen se fusionan y crean la impresión de una imagen homogénea cuya luminosidad aparentemente varía con suavidad de una zona a otra. Sin embargo, cuando se examina la imagen a escalas de distancia cada vez menores, se observa que difiere notablemente de ese aspecto homogéneo que presenta cuando se ve a grandes distancias. No es más que un conjunto de puntos discretos que están bastante separados entre sí. Pero, tengamos en cuenta que sólo se es consciente de la naturaleza discreta de la imagen cuando se examina a escalas mínimas; de lejos parece homogénea. De manera similar, la estructura del espacio-tiempo se presenta lisa, salvo cuando se examina con precisión ultramicroscópica. Ésta es la razón por la cual la relatividad general funciona bien a distancias (y tiempos) suficientemente grandes —las escalas que corresponden a muchas aplicaciones astronómicas típicas— pero se vuelve incoherente a distancias y tiempos cortos. El dogma fundamental de una geometría para superficies lisas y ligeramente curvadas se justifica a grandes escalas, pero se derrumba debido a las fluctuaciones cuánticas cuando se lleva a pequeñas escalas.
Los principios básicos de la relatividad general y de la mecánica cuántica nos permiten calcular las escalas de distancia aproximadas bajo las cuales habría que entrar para que resultaran perceptibles los perniciosos fenómenos de la Figura 5.1. El pequeño valor de la constante de Planck —que rige la fuerza de los efectos cuánticos— y la debilidad intrínseca de la fuerza gravitatoria se unen para producir un resultado llamado la
longitud de Planck
, que es tan pequeña que casi no puede imaginarse: la milésima de una millonésima de una billonésima de una billonésima de centímetro (10
–33
centímetros).
[37]
Así, el quinto nivel en la Figura 5.1 representa esquemáticamente el paisaje del universo a una escala de longitud ultramicroscópica, inferior a la de Planck. Para hacernos una idea de esta escala, si ampliáramos un átomo al tamaño del universo conocido, la longitud de Planck se expandiría solamente hasta la altura de un árbol promedio.
De esta forma, vemos que la incompatibilidad entre la relatividad general y la mecánica cuántica se manifiesta sólo en un dominio bastante esotérico del universo. Por esta razón, sería razonable que nos preguntáramos si vale la pena preocuparse por ello. De hecho, los físicos no hablan con una voz única cuando se refieren a esta cuestión. Hay físicos que son conscientes de este problema, pero se las arreglan felizmente, cuando sus investigaciones lo requieren, utilizando la mecánica cuántica y la relatividad general para resolver cuestiones en las que se manejan habitualmente longitudes muy superiores a la longitud de Planck. Hay otros físicos, sin embargo, que están profundamente consternados por el hecho de que los dos pilares fundamentales de la física, hasta donde sabemos, son en lo básico fundamentalmente incompatibles, con independencia de que sea a distancias ultramicroscópicas donde se detecte el problema. Según argumentan éstos, dicha incompatibilidad indica la existencia de un fallo esencial en nuestro modo de comprender el universo físico. Esta opinión se basa en un punto de vista no demostrable, pero profundamente sentido, según el cual el universo, si se considera a su nivel más profundo y elemental, ha de poder describirse mediante una teoría lógicamente coherente cuyas partes encajen en total armonía. Seguramente, aparte de la importancia que pueda tener esta incompatibilidad para sus propias investigaciones, a la mayoría de los físicos les resulta difícil creer que, en el fondo, nuestra explicación teórica más profunda sobre el universo sea un remiendo matemáticamente inconsistente de dos marcos explicativos poderosos, pero contradictorios.
Los físicos han llevado a cabo numerosos intentos de modificar de algún modo la relatividad general o la mecánica cuántica para evitar este conflicto, pero estos intentos, aunque a menudo han sido intrépidos e ingeniosos, han desembocado en un fracaso tras otro.
Así ha sido, hasta el descubrimiento de la teoría de las supercuerdas.
[38]
D
esde hace mucho tiempo, la música ha proporcionado las metáforas elegidas para referirse a los problemas relativos al cosmos que han dado más quebraderos de cabeza. Desde la antigua expresión pitagórica «música de las esferas», hasta las «armonías de la naturaleza» que han guiado la investigación a través de los tiempos, nos hemos dedicado colectivamente a buscar la canción que canta la naturaleza en el tranquilo deambular de los cuerpos celestes y en el alboroto de las detonaciones de las partículas subatómicas. Con el descubrimiento de la teoría de las supercuerdas, las metáforas musicales adoptan un realismo sorprendente, ya que esta teoría sugiere que el paisaje microscópico está cubierto por diminutas cuerdas cuyos modelos de vibración orquestan la evolución del cosmos. Los vientos del cambio, según la teoría de las supercuerdas, soplan en ráfagas a través de un universo eólico.
Esto contrasta con el modelo estándar, que considera a los constituyentes elementales del universo como ingredientes similares a puntos, sin estructura interna. A pesar de lo poderoso que es este planteamiento (como ya hemos mencionado, todas las predicciones relativas al mundo microscópico realizadas mediante el modelo estándar se han verificado esencialmente hasta escalas de una trillonésima de metro, el límite tecnológico actual), el modelo estándar no debe considerarse como una teoría completa o definitiva, porque no incluye la gravedad. Además, han fallado los intentos de incorporar la gravedad al marco de la mecánica cuántica debido a las violentas fluctuaciones que aparecen en la estructura espacial a escalas ultramicroscópicas, es decir, cuando se consideran distancias menores que la longitud de Planck. Este conflicto no resuelto ha fomentado la búsqueda de un conocimiento aún más profundo de la naturaleza. En 1984, los físicos Michael Green, entonces en el
Queen Mary College
, y John Schwarz, del
California Institute of Technology
, proporcionaron la primera prueba convincente de que la
teoría de las supercuerdas
(o teoría de cuerdas, para abreviar) podría aportar este conocimiento.
La teoría de cuerdas ofrece una nueva y profunda modificación de nuestra descripción teórica de las propiedades ultramicroscópicas del universo —una modificación que, como fueron constatando los físicos lentamente, altera la relatividad general de Einstein justo de la manera precisa para hacerla totalmente compatible con las leyes de la mecánica cuántica—. Según la teoría de cuerdas, los componentes elementales del universo
no son
partículas puntuales, sino diminutos filamentos unidimensionales, algo así como tiras de goma infinitamente delgadas, que vibran de un lado para otro. Pero hay que evitar que este nombre nos pueda inducir a engaño: a diferencia de un trozo ordinario de cuerda, que está compuesto de moléculas y átomos, se supone que las cuerdas de la teoría de cuerdas están en una ubicación profunda en lo más interno de la materia. La teoría plantea que
son
unos componentes microscópicos que constituyen las partículas de las que están formados los propios átomos. Las cuerdas de la teoría de cuerdas son tan pequeñas —su longitud media es aproximadamente la longitud de Planck— que
parecen
puntos incluso cuando son examinadas con los instrumentos más potentes.
La simple sustitución de las partículas puntuales por ramales de cuerda como componentes fundamentales de cualquier cosa tiene unas consecuencias de largo alcance. En primer lugar y ante todo, la teoría de cuerdas parece resolver el conflicto entre la relatividad general y la mecánica cuántica. Como veremos más adelante, la naturaleza espacialmente alargada de una cuerda es el nuevo elemento crucial que permite crear un marco armonioso único que incorpora ambas teorías. En segundo lugar, la teoría de cuerdas proporciona una teoría auténticamente unificada, ya que se propone que toda la materia y todas las fuerzas surgen a partir de un componente básico: las cuerdas oscilantes. Finalmente, como se explicará, de una manera más completa, en capítulos posteriores, además de estos logros notables, la teoría de cuerdas, una vez más, cambia radicalmente nuestra manera de entender el espacio-tiempo.
[39]