Read Traffic Online

Authors: Tom Vanderbilt

Traffic (41 page)

Then there is the shifting, dynamic nature of traffic itself. It is sometimes impossible to say what a “correct” evasive maneuver would be in the moment of trying to avoid another driver, as it could be canceled out by an unexpected countermove by that other driver. In one trial, forty-nine drivers were put in a driving simulator at Daimler-Benz. As they approached an intersection, a car that had been stopped on the crossroad suddenly accelerated into the intersection, then halted in the drivers’ lane. The reaction time of every driver was sufficient, in theory, to avoid a crash. But only ten of forty-nine did. Part of the problem is that they had only time enough to react to the presence of the approaching car, and not enough time to fully discern what the intruding car was going to do. It was less about a correct maneuver than a roll of the dice.

Whether advanced driver training helps drivers in the long term is one of those controversial and unresolved mysteries of the road, but my eye-opening experience at Bondurant raises the curious idea that we buy cars—for most people one of the most costly things they will ever own—with an underdeveloped sense of how to use them. This is true for many things, arguably, but not knowing what the F9 key does in Microsoft Word is less life-threatening than not knowing how to properly operate antilock brakes.

This uneasy idea is one of the many unresolved tensions and contradictions found in driving and the traffic it spawns. There is the contradiction of the car itself: With its DNA steeped in racing, today it’s often just part of a loosely organized, greatly inefficient mass-transit system, a “living room on wheels.” To drive safely is often to become rather bored, which may lead us to become distracted and thus less safe. On the other hand, if we drove like racers, we would have little problem becoming distracted or falling asleep, but we would inherently be driving less safely. (Even the most skilled drivers cannot overcome the fundamental physics of things like stopping distance.) We all think we’re better than the average driver. We think cars are the risk when on foot; we think pedestrians act dangerously when we’re behind the wheel. We want safer cars so we can drive more dangerously. Driving, with its exhilarating speed and the boundless personal mobility it grants us, is strangely life-affirming but also, for most of us, the most deadly presence in our lives. We all want to be individuals on the road, but smooth-flowing traffic requires conformity. We want all the lights to be green, unless we are on the intersecting road, in which case we want
those
lights to be green. We want little traffic on our own street but a convenient ten-lane highway blazing just nearby. We all wish the other person would not drive, so that our trip would be faster. What’s best for us on the road is often not best for everyone else, and vice versa.

The reason I have avoided talking about the negative environmental consequences of the car is that I believe, as was once said, that it will be easier to remove the internal-combustion engine from the car than it will to remove the driver. With fuel economy liberated by some renewable, sustainable fuel source of the future, all the dynamics of traffic I have described will only become more amplified. As Larry Burns, vice president of R&D and strategic planning at General Motors, put it to me, “Of all the externalities of an auto that I worry about—energy, environment, equality of access, safety, and congestion—the one that I think is toughest to solve is congestion.”

Even if the driver is still in the car, whether he or she will be driving in the future is another question. Virtually all of the perceptual limitations we have in driving—blind spots, overdriving our headlights, problems in detecting the rate of closure—are being addressed by scientists and car manufacturers. High-end cars already bristle with these features. An ad for BMW’s xDrive system, which “uses sensors to monitor the road ahead,” puts it succinctly. It says, “xDrive reaction time: 100 milliseconds. Human reaction time: unnecessary.” Technologies like “gaze detection,” in which the car will tell the driver that he or she is not paying attention (by tracking eye movements), are on the horizon.

The future of driving will probably look a lot less like the track at Bondurant and much more like the 200,000-square-foot parking lot at AT&T Park (ordinarily home of the San Francisco Giants) during the World Congress on Intelligent Transport Systems. The parking lot had been converted into a “Innovative Mobility Showcase” for any number of high-tech traffic devices. It looked like a kind of strange carnival of human limitations. There were “Intelligent Intersections” that could alert drivers when an approaching driver did not seem, as calculated by sensors and algorithms, intent on stopping and “Dynamic Parking” demonstrations that promised to end, through real-time sensors, the search for open parking spots.

I was riding in a Cadillac CTS with C. Christopher Kellum and Priyantha Mudalige, two researchers with General Motors. The car, via GPS technology and receivers, was communicating with the other cars, also equipped with the technology. GM calls its technology “vehicle to vehicle,” and the idea is that by connecting all the cars in a kind of mobile network, this shared intelligence can help you “watch for the other guy,” as Mudalige put it. A screen displayed the fact that we were connected to two other vehicles. The researchers are aware that any system released into the real world would have to contend with hundreds more at a time. “We do lots of simulations to understand what happens when there’s two thousand vehicles in the same spot,” said Kellum. “We need an intelligent way to parse out what information is important and what’s not important. If there’s an accident a mile ahead, you want that information. If it’s just some guy driving a mile ahead, you don’t really care.”

If this sounds familiar, it’s because it is: This kind of incident detection and evaluation was one of the key tasks the Stanford team had targeted in getting their robotic car Junior to drive successfully in simulated urban traffic. I was, I realized, sitting in Junior’s cousin. Kellum asked me to change lanes, even though I knew, in this case, that a neighboring car had crept into my blind spot. As I put the signal on, I felt a small, Magic Fingers–style vibration in my back. This is known as a haptic warning, and it is used so that the driver will not be overwhelmed with visual or auditory information, or to underscore warnings he or she might disregard. (As you will feel when your car has drifted off the road into gravel, haptic warnings can be crudely effective.) One of the issues that haunts driver-assist technologies like “lane-departure warnings” is that these warnings can become ever more prescient, ever more sophisticated, but drivers still have to pay attention to the warning and be able to react accordingly.

Or perhaps not. Next, Kellum asked me to drive at a steady clip toward a parked car far in the distance. “Whatever feels comfortable,” he said. He then asked me not to press the brakes. “We’re going to go up there and our car’s going to brake automatically,” he said. “In real time we’re constantly assessing how far away we are, the closing speeds, and when to start braking. I’ve done this at seventy-five miles per hour.” This was essentially the same exercise as at Bondurant, but instead of being asked to lock up the ABS, I was being asked to sit back and do nothing. I was in Junior, and I was riding shotgun. The stopped car quickly loomed into view. Time seemed to slow for a moment. (In reality, as studies have suggested, it probably sped up and this was just my memory playing tricks.) A chill shot through my body; the hairs on my neck tingled. Images of blooming air bags and the buckling necks of crash-test dummies ran through my head like a fleeting nightmare. The car came to a perfect stop.

Somewhere down the road, in some distant future, humans may evolve to become perfect drivers, with highly adapted vision and reflexes for moving seamlessly at high speeds. Perhaps, like the ants, we will turn the highways into blissfully cooperative, ultraefficient streams of movement, with no merging or tailgating or finger flipping. Long before that happens, however, a sooner future seems likely: cars driving themselves, at smoothly synchronized speeds to ensure maximum traffic flow and safe following distances, equipped with merging algorithms set for highest throughput, all overseen by network routers that guide cars down the most efficient paths on these information superhighways. Maybe this will be the traffic nirvana for which we have been searching. We would do well, though, to remember the warning from the mid-twentieth-century traffic engineer Henry Barnes: “As time goes on the technical problems become more automatic, while the people problems become more surrealistic.” Even if drivers are taken away from the wheel, can we ever take the mere fact of being human out of traffic?

         

Despite possessing the small diploma known as a driver’s license, I was, throughout the course of this endeavor, a novice in a complex field. I relied on the help of many people in many places, without whom this book would have been impossible.

In no logical order, then, and with any omissions purely unintended, allow me to unravel the roster of gratitude, beginning geographically with the American Middle West. At the University of Iowa and at its National Advanced Driving Simulator, Daniel McGehee, John Lee, Omar Ahmad, and Tara Smyser patiently explained their findings and looked the other way as I skidded out of control in Virtual Iowa on the world’s most advanced driving simulator. At the University of Michigan, Michael Flannagan and Daniel Blower at the Transportation Research Institute, and Barry Kantowitz in the Department of Engineering, walked me through ergonomics, vision, and other topics. Over in Warren, Michigan, and in Detroit, Richard A. Young, Larry Burns, and Linda S. Angell of General Motors popped open the hood on the automaker’s research. In Chicago, Howard Hayes and Larry Peterson of Navteq walked me through the company’s traffic monitoring operations, while Jean Gornicki took me on a Navteq mapping drive of the suburbs. At the University of North Dakota, Mark Nawrot taught me Motion Parallax 101, among other things.

In Los Angeles, special thanks are due to John E. Fisher, Assistant General Manager of the Los Angeles Department of Transportation, and Frank Quon, Deputy District Director of Operations for District 7, for sharing their extensive knowledge and insight into how traffic in L.A. functions. Thanks also to Marco Ruano, Dawn Helou, Afsaneh M. Razavi, and Jeanne Bonfilio of Caltrans, and James Okazaki, Kartik Patel, and Verej Janoyan of LA DOT. Thanks to Chris Hughes, Claire Sigman, and Shane Novicki at Clear Channel’s Airwatch in Orange County, as well as Vera Jimenez at CBS2 in Los Angeles, for dishing on L.A. traffic in all its infinite varieties. Sergeant Joseph Zizi of the California Highway Patrol gave me an intimate view into patroling the highway and answered any number of statistical queries. At UCLA, a number of people across different departments shared their expertise: Donald Shoup, Jay Phelan, Brian D. Taylor, Randall Crane, and Jack Katz. At Stanford University, thanks to Sebastian Thrun and Michael Montemerlo.

In the New York region, thanks are due to Kay Sarlin, Ryan Russo, and Michael Primeggia of the New York City Department of Transportation. Sam “Gridlock Sam” Schwartz of Sam Schwartz PLLC and Michael King at Nelson/Nygaard provided invaluable insight and commentary on New York traffic. Aaron Naparstek was a constant source of traffic inspiration, and under his editorship,
streetsblog.org
remains the world’s single best source of transportation news and opinion. At the New Jersey Department of Transportation in Trenton, Gary Toth and Yosry Bekhiet gave me a tour of the city’s highway overhaul and patiently explained “Jersey jughandles” and other exotic traffic creatures of the Garden State (where this book began). In the Washington, D.C.–Beltway area, special thanks to Nancy McGuckin and Alan Pisarski; and, at the Federal Highway Administration, thanks to Tom Granda, Carl Anderson, Doug Hecox, John McCracken, Michael Trentacoste, Bill Prosser, and Ray Krammes for the tour of the Turner-Fairbank Lab, the lively roundtable discussion, and subsequent conversations. At the National Highway Safety Administration, thanks to Charles Kahane and Patricia Ellison-Potter.

In Canada, Gerry Wilde offered his theories on risk homeostasis (and top-drawer espresso). Baher Abdulhai, founder and head of the Intelligent Transportation Systems Centre and Testbed at the University of Toronto, explained the “fundamental diagrams” and other traffic intricacies to me. In Mexico City, Mario González-Román took me driving on the monumental Segundo Piso and helped in countless other ways. Thanks also to Agustín Barrios Gómez and Alan Skinner. Alfredo Hernández García, executive director of traffic control and engineering at the Secretaría de Seguridad Pública of the Gobierno del Distrito Federal, opened up the city’s Traffic Management Center in the Colonia Obrera. Thanks also to Claudia Adeath at Muévete por tu Ciudad, which deserves kudos for trying to calm Mexico City’s often hostile traffic.

In England, thanks to Malcolm Murray-Clark, Director of Congestion Charging in London, and Phil Davis, at Transport for London’s London Traffic Control Centre. Peter Weeden of the Royal Kensington Borough Council graciously offered his time and expertise. John Adams, professor emeritus at University College London, offered his always trenchant thoughts on risk. At the Transport Research Laboratory in Wokingham, Janet Kennedy shared her expertise and the lab’s driving simulator. Thanks also to John Groeger at the University of Surrey, Jake Desyllas at Intelligent Space, and Bill Hillier and Alain Chiaradia at Space Syntax. In Germany, Michael Schreckenberg at the University of Duisburg-Essen’s Physics of Transport and Traffic department held a wide-ranging and illuminating symposium for me on the personal and system-wide physics of traffic. At the Bundesanstalt für Straßenwesen (Federal Highway Research Unit) in Bergisch Gladbach, Germany, Karl-Josef Höhnscheid and Kerstin Lemke answered my questions about the autobahn and other topics. Thanks also to Juergen Berlitz at the ADAC (Allgemeiner Deutscher Automobil-Club). In Copenhagen, thanks are due to the esteemed traffic guru Jan Gehl, at Jan Gehl Associates; and Steffen Rasmussen, of the city’s Traffic and Planning Office. In Italy, many thanks to Paolo Borgognone and Giuseppe Cesaro of the Automobile Club d’Italia for the traffic knowledge and the excellent
cacio e pepe.
Thanks also to Andrea del Martino at the Laboratory of Complex Systems at “La Sapienza,” and Max Hall, physics teacher and Roman Vespa rider.

In Beijing, thanks to Wang Shuling, Xian Kai, and Zhang Dexin at the Beijing Transportation Research Center for explaining the evolving complexities of traffic in the capital. Thanks also to Professors Rong Jian and Chen Yanyan at the Beijing University of Technology, as well as Dehui Lee. Thanks also to Lui Shinan at the
China Daily
; and Scott Kronick, Jonathan Landreth, and Alex Pasternak. In Shanghai, thanks to Jian Shuo Wang, and Zhongyin Guo of Tongji University; thanks also to Dan Washburn for hospitality and advice. In Japan, thanks to Paul Nolasco, Imai Tomomi, and James Corbett for arranging the tour of Toyota’s Integrated System Engineering Division in Nagoya. In Hanoi, Vietnam, thanks to Walter Molt and Grieg Craft, who are, in their own different ways, trying to make the city’s transportation better and safer. In Delhi, thanks to Maxwell Pereira; Geetam Tiwari and Dinesh Mohan at the Indian Institute of Technology; and Joint Commissioner of Police Qamar Ahmed. Thanks also to Rohit Baluja, Girish Chandra Kukreti, and Amandeep Singh Bedi of the Institute for Road Traffic Education.

Thanks must also go to a number of people, across the globe, who discussed their research, showed the way, corrected my mistakes. Again, in no order: Per Garder at the University of Maine; Eric Dumbaugh at Texas A&M University; Ezra Hauer, professor emeritus, University of Toronto; Walter Kulash, Dan Burden, and Ian Lockwood of Glatting Jackson in Orlando, Florida; Allan Williams and Kim Hazelbaker of the Insurers’ Institute for Highway Safety; Sheila “Charlie” Klauer and Suzie Lee of the Virginia Tech Transportation Institute; Charles Zegeer at the Highway Safety Research Center; Erik Olson at the National Institute of Child Health and Human Development; Del Lisk, Bruce Moeller, and Rusty Weiss of DriveCam in San Diego; Christopher Patten of the Swedish Road Administration; John Dawson at the European Road Assessment Program; Tom Bernthal of Kelton Research; Sandi Rosenbloom at the University of Arizona; Tova Rosenbloom of Bar-Ilan University in Israel; Heikki Summala of the Traffic Research Unit at the University of Finland; Oliver Downs and Michele Largé at INRIX; Hussein Dia at the University of Queensland Intelligent Transport Systems lab; Graham Coe at the Transport Research Laboratory; Nick Fenton at U.K Highways Agency; Robert Gray at Arizona State University; Norman Garrick at the University of Connecticut; James Cutting at Cornell University; Anna Hackett, Bob Bondurant, Les Betchner, and Mike McGovern at the Bondurant School of High Performance Driving; Judie Zimomra and Amanda Rutherford in Sanibel Island, Florida; Charles Spence at the University of Oxford; Eric Bonabeau at Icosystem; Antti Oulasvirta at the University of California, Berkeley; Stephen Lea at the University of Exeter; Denis Wood at the University of North Carolina; Eleanor Maguire at University College London; Dale Purves at Duke University; Michael Spivey at Cornell University; Kara Kockelman at the University of Texas; Moshe Ben-Akiva at the Massachusetts Institute of Technology; Gary Evans at Cornell University; John Kobza at Texas Tech University; Timothy McNamara at Vanderbilt University; John Van Horn at
Parking Today
; Andrew Velkey at Christopher Newport University; Franco Servadei at Ospedale “M. Buttalini,” Cesena, Italy; Gary Davis at the University of Minnesota; Robert Cialdini at Arizona State University; Marc Ross at the University of Michigan; Nicholas Garber at the University of Virginia; Tom Wenzel at Lawrence Berkeley National Laboratory; Phil Jones of Phil Jones Associates in the United Kingdom; Jake Desyllas of Intelligent Space in London; Sidney Nagel and Lior Strahilevetz at the University of Chicago; Frank McKenna at the University of Reading; Geoff Underwood at the University of Nottingham; Daniel Lieberman at Harvard University; Stephen Popiel at Synovate; Asha Weinstein Agrawal at San Jose State University; Jeffrey Brown at Florida State University; Gordy Pehrson at the Office of Traffic Safety in St. Paul, Minnesota; David Levinson at the University of Minnesota; Charles Komanoff at Komanoff Energy Associates; Giuseppe La Torre at the Catholic University in Rome; Eric Poehler at the University of Virginia; Mark Horswill at the University of Queensland; Michael Paine at Vehicle Design and Research in Australia; Joseph Barton at Northwestern University; Anna Nagurney at the University of Massachusetts; David Gerard and Paul Fischbeck at Carnegie Mellon University; Andy Wiley-Schwartz, then of the Project for Public Spaces; Craig Davis at the University of Michigan; Bruce Laval, formerly of Disney; and Richard Larson at the Massachusetts Institute of Technology.

A handful of people deserve even more emphatic thanks for going above and beyond in sharing their research, or reading drafts of chapters. Leonard Evans, the dean of traffic safety, was always there to offer his expertise. Jeffrey Muttart made time to talk on countless occasions and ran experiments on my behalf. Stephen Most at the University of Delaware and Daniel Simons at the University of Illinois read parts of the manuscript and offered useful commentary, as did Matthew Kitchen of the Puget Sound Regional Council. Benjamin Coifman at Ohio State University helped me through the complexities of traffic flow. Ian Walker at the University of Bath is a brilliant scholar and all-around mensch. Iain Couzin at Oxford and Princeton led me through the world of ant traffic. James Surowiecki and Matt Weiland read drafts and offered honest feedback. Peter Hall graciously chipped in with research help. Ben Hamilton-Baillie, impassioned “shared space” advocate and wizard of the slide show, led me on an eye-opening tour through Germany and the Netherlands, where he generously introduced me to Joost Váhl, one of the seminal forces in traffic calming and engineering with a human face, and Hans Monderman, whose words and spirit pervade this book. My time spent with Hans, and subsequent conversations, revealed a man brimming with passion, insight, sly wit, and a surprisingly capacious range of interests. Into his discussion of left-turn gap acceptance or roundabout capacity he would percolate ideas on how the geography of the Netherlands fostered Dutch innovation, or quote Proust on how the automobile changed our conception of time. Hans died on January 7, 2008, after a several-year fight with cancer. I only hope I can help Hans’s legacy live on in these pages.

I am indebted to Andrew Miller at Alfred A. Knopf, who encouraged me early on when the book was nothing but the grain of an idea, and subsequently was a steadfast presence, offering judicious editorial counsel, moral support, and the occasional football result. Sara Sherbill at Knopf also contributed a number of good criticisms, most of which helped shape the final book. Bonnie Thompson corralled wayward grammar, exposed logical lacunae, and kept facts this side of veracity. Thanks to the Knopf publicity team, Paul Bogaards, Gabrielle Brooks, Erinn Hartman, Nicholas Latimer, and Jason Kincade. Will Goodlad at Penguin UK offered all of the above from across the Atlantic. Lastly, I am immensely obliged to my agent and longtime friend, Zoe Pagnamenta, at PFD New York. She has been a tireless and sagacious advocate for me and the book, and I never felt as if I were going it alone. I am also grateful to Simon Trewin at PFD in London.

And finally, this book is dedicated to my family, near and far, who were there from the beginning of the journey; especially my wife, Jancee Dunn, my beautiful, brilliant co-passenger in the car, and in life.

Other books

Gently Sahib by Hunter Alan
Sweet Sofie by Elizabeth Reyes
Falling for Romeo by Laurens, Jennifer
Devil-Devil by G.W. Kent
Scars by Kathryn Thomas
IRISH: a Bad Boy Fighter Romance by Hawthorne, Olivia, Long, Olivia
His Last Duchess by Gabrielle Kimm
Sins and Needles by Monica Ferris


readsbookonline.com Copyright 2016 - 2024