Read Thinking, Fast and Slow Online

Authors: Daniel Kahneman

Thinking, Fast and Slow (49 page)

This mode of judgment violates the normative statistical theory in which the extremeness and the range of predictions are controlled by considerations of predictability. When predictability is nil, the same prediction should be made in all cases. For example, if the descriptions of companies provide no information relevant to profit, then the same value (such as average profit) should be predicted for all companies. If predictability is perfect, of course, the values predicted will match the actual values and the range of predictions will equal the range of outcomes. In general, the higher the predictability, the wider the range of predicted values.

Several studies of numerical prediction have demonstrated that intuitive predictions violate this rule, and that subjects show little or no regard for considerations of predictability.
9
In one o [pand tf these studies, subjects were presented with several paragraphs, each describing the performance of a student teacher during a particular practice lesson. Some subjects were asked to evaluate the quality of the lesson described in the paragraph in percentile scores, relative to a specified population. Other subjects were asked to predict, also in percentile scores, the standing of each student teacher 5 years after the practice lesson. The judgments made under the two conditions were identical. That is, the prediction of a remote criterion (success of a teacher after 5 years) was identical to the evaluation of the information on which the prediction was based (the quality of the practice lesson). The students who made these predictions were undoubtedly aware of the limited predictability of teaching competence on the basis of a single trial lesson 5 years earlier; nevertheless, their predictions were as extreme as their evaluations.

The illusion of validity
. As we have seen, people often predict by selecting the outcome (for example, an occupation) that is most representative of the input (for example, the description of a person). The confidence they have in their prediction depends primarily on the degree of representativeness (that is, on the quality of the match between the selected outcome and the input) with little or no regard for the factors that limit predictive accuracy. Thus, people express great confidence in the prediction that a person is a librarian when given a description of his personality which matches the stereotype of librarians, even if the description is scanty, unreliable, or outdated. The unwarranted confidenc
e which is produced by a good fit between the predicted outcome and the input information may be called the illusion of validity. This illusion persists even when the judge is aware of the factors that limit the accuracy of his predictions. It is a common observation that psychologists who conduct selection interviews often experience considerable confidence in their predictions, even when they know of the vast literature that shows selection interviews to be highly fallible. The continued reliance on the clinical interv
iew for selection, despite repeated demonstrations of its inadequacy, amply attests to the strength of this effect.

The internal consistency of a pattern of inputs is a major determinant of one’s confidence in predictions based on these inputs. For example, people express more confidence in predicting the final grade point average of a student whose first-year record consists entirely of B’s than in predicting the grade point average of a student whose first-year record includes many A’s and C’s. Highly consistent patterns are most often observed when the input variables are highly redundant or correlated. Hence, people tend to have great confidence in predictions based on redundant input variables. However, an elementary result in the statistics of correlation asserts that, given input variables of stated validity, a prediction based on several such inputs can achieve higher accuracy when they are independent of each other than when they are redundant or correlated. Thus, redundancy among inputs decreases accuracy even as it increases confidence, and people are often confident in predictions that are quite likely to be off the mark.
10

Misconceptions of regression
. Suppose a large group of children has been examined on two equivalent versions of an aptitude test. If one selects ten children from among those who did best on one of the two versions, he will usually find their performance on the second version to be somewhat disappointing. Conversely, if one selects ten children from among those who did worst on one version, they will be found, on the average, to do somewhat better on the other version. Mo [r vs tre generally, consider two variables
X
and
Y
which have the same distribution. If one selects individuals whose average
X
score deviates from the mean of
X
by
k
units, then the average of their
Y
scores will usually deviate from the mean of
Y
by less than
k
units. These observations illustrate a general phenomenon known as regression toward the mean, which was first documented by Galton more than 100 years ago.

In the normal course of life, one encounters many instances of regression toward the mean, in the comparison of the height of fathers and sons, of the intelligence of husbands and wives, or of the performance of individuals on consecutive examinations. Nevertheless, people do not develop correct intuitions about this phenomenon. First, they do not expect regression in many contexts where it is bound to occur. Second, when they recognize the occurrence of regression, they often invent spurious causal explanations for it.
11
We suggest that the phenomenon of regression remains elusive because it is incompatible with the belief that the predicted outcome should be maximally representative of the input, and, hence, that the value of the outcome variable should be as extreme as the value of the input variable.

The failure to recognize the import of regression can have pernicious consequences, as illustrated by the following observation.
12
In a discussion of flight training, experienced instructors noted that praise for an exceptionally smooth landing is typically followed by a poorer landing on the next try, while harsh criticism after a rough landing is usually followed by an improvement on the next try. The instructors concluded that verbal rewards
are detrimental to learning, while verbal punishments are beneficial, contrary to accepted psychological doctrine. This conclusion is unwarranted because of the presence of regression toward the mean. As in other cases of repeated examination, an improvement will usually follow a poor performance and a deterioration will usually follow an outstanding performance, even if the instructor does not respond to the trainee’s achievement on the first attempt. Because the instructors had praised their trainees after good landings and admonished them after poor ones, they reached the erroneous and potentially harmful conclusion that punishment is more effective than reward.

Thus, the failure to understand the effect of regression leads one to overestimate the effectiveness of punishment and to underestimate the effectiveness of reward. In social interaction, as well as in training, rewards are typically administered when performance is good, and punishments are typically administered when performance is poor. By regression alone, therefore, behavior is most likely to improve after punishment and most likely to deteriorate after reward. Consequently, the human condition is such that, by chance alone, one is most often rewarded for punishing others and most often punished for rewarding them. People are generally not aware of this contingency. In fact, the elusive role of regression in determining the apparent consequences of reward and punishment seems to have escaped the notice of students of this area.

Av
ailability

 

There are situations in which people assess the frequency of a class or the probability of an event by the ease with which instances or occurrences can be brought to mind. For example, one may assess the risk of heart attack among middle-aged people by recalling such occurrences a [occpunishmentmong one’s acquaintances. Similarly, one may evaluate the probability that a given business venture will fail by imagining various difficulties it could encounter. This judgmental heuristic is called availability. Availability is a useful clue for assessing frequency or probability, because instances of large classes are usually recalled better and faster than instances of less frequent classes. However, availability is affected by factors other than frequency and probability. Consequently, the reliance on availabilit
y leads to predictable biases, some of which are illustrated below.

Biases due to the retrievability of instances
. When the size of a class is judged by the availability of its instances, a class whose instances are easily retrieved will appear more numerous than a class of equal frequency whose instances are less retrievable. In an elementary demonstration of this effect, subjects heard a list of well-known personalities of both sexes and were subsequently asked to judge whether the list contained more names of men than of women. Different lists were presented to different groups of subjects. In some of the lists the men were relatively more famous than the women, and in others the women were relatively more famous than the men. In each of the lists, the subjects erroneously judged that the class (sex) that had the more famous personalities was the more numerous.
13

In addition to familiarity, there are other factors, such as salience, which affect the retrievability of instances. For example, the impact of seeing a house burning on the subjective probability of such accidents is probably greater than the impact of reading about a fire in the local paper. Furthermore, recent occurrences are likely to be relatively more available than earlier occurrences. It is a common experience that the subjective probability of traffic accidents rises temporarily when one sees a car overturned by the side of the road.

Biases due to the effectiveness of a search set
. Suppose one samples a word (of three letters or more) at random from an English text. Is it more likely that the word starts with
r
or that
r
is the third letter? People approach this problem by recalling words that begin with
r
(
road
) and words that have
r
in the third position (
car
) and assess the relative frequency by the ease with which words of the two types come to mind. Because it is much easier to search for words by their first letter than by their third letter, most people judge words that begin with a given consonant to be more numerous than words in which the same consonant appears in the third position. They do so even for consonants,
such as
r
or
k
, that are more frequent in the third position than in the first.
14

Different tasks elicit different search sets. For example, suppose you are asked to rate the frequency with which abstract words (
thought
,
love
) and concrete words (
door
,
water
) appear in written English. A natural way to answer this question is to search for contexts in which the word could appear. It seems easier to think of contexts in which an abstract concept is mentioned (love in love stories) than to think of contexts in which a concrete word (such as
door
) is mentioned. If the frequency of words is judged by the availability of the contexts in which they appear, abstract words will be judged as relatively more numerous than concrete words. This bias has been observed in a recent s
tudy
15
which showed that the judged frequency of occurrence of abstract words was much higher than that of concrete words, equated in objective frequency. Abstract words were also judged to appear in a much greater variety of contexts than concrete words.

Biases of imaginability
. Sometimes one has to assess the frequency of a class whose instances are not stored in memory but can be generated according to a given rule. In such situations, one typically generates several instances and evaluates frequency or probability by the ease with which the relevant instances can be constructed. However, the ease of constructing instances does not always reflect their actual frequency, and this mode of evaluation is prone to biases. To illustrate, consider a group of 10 people who form committees of
k
members, 2 =
k
= 8. How many different committees of
k
members can be formed? The correct answer to this problem is given by the binomial coefficient (10/
k
) which reaches a maximum of 252 for
k
=
5
. Clearly, the number of committees of
k
members equals the number of committees of (10 –
k
) members, because any committee of
k
members defines a unique group of (10 –
k
) nonmembers.

One way to answer this question without computation is to mentally construct committees of
k
members and to evaluate their number by the ease with which they come to mind. Committees of few members, say 2, are more available than committees of many members, say 8. The simplest scheme for the construction of committees is a partition of the group into disjoint sets. One readily sees that it is easy to construct five disjoint committees of 2 members, while it is impossible to generate even two disjoint committees of 8 members. Consequently, if frequency is assessed by imaginability, or by availability for construction, the small committees will appear more numerous than larger committees, in contrast to the correct bell-shaped function. Indeed, when naive subjects were asked to estimate the number of distinct committees of various sizes, their estimates were a decreasing monotonic function of committee size.
16
For example, the median estimate of the number of committees of 2 members was 70, while the estimate for committees of 8 members was 20 (the correct answer is 45 in both cases).

Other books

Moreton's Kingdom by Jean S. MacLeod
Haunted by Merrill, R.L.
Bound to Me by Jeannette Medina, Karla Bostic, Stephanie White
The Chase by Clive Cussler
Run Away by Victor Methos
Providence by Barbara Britton


readsbookonline.com Copyright 2016 - 2024