Read Thinking, Fast and Slow Online
Authors: Daniel Kahneman
Overconfidence
For a number of years, professors at Duke University conducted a survey in which the chief financial officers of large corporations estimated the returns of the Standard & Poor’s index over the following year. The Duke scholars collected 11,600 such forecasts and examined their accuracy. The conclusion was straightforward: financial officers of large corporations had no clue about the short-term future of the stock market; the correlation between their estimates and the true value was slightly less than zero! When they said the market would go down, it was slightly more likely than not that it would go up. These findings are not surprising. The truly bad news is that the CFOs did not appear to know that their forecasts were worthless.
In addition to their best guess about S&P returns, the participants provided two other estimates: a value that they were 90% sure would be too high, and one that they were 90% sure would be too low. The range between the two values is called an “80% confidence interval” and outcomes that fall outside the interval are labeled “surprises.” An individual who sets confidence intervals on multiple occasions expects about 20% of the outcomes to be surprises. As frequently happens in such exercises, there were far too many surprises; their incidence was 67%, more than 3 times higher than expected. This shows that CFOs were grossly overconfident about their ability to forecast the market.
Overconfidence
is another manifestation of WYSIATI: when we estimate a quantity, we rely on information that comes to mind and construct a coherent story in which the estimate makes sense. Allowing for the information that does not come to mind—perhaps because one never knew it—is impossible.
The authors calculated the confidence intervals that would have reduced the incidence of surprises to 20%. The results were striking. To maintain the rate of surprises at the desired level, the CFOs should have said, year after year, “There is an 80% chance that the S&P return next year will be between –10% and +30%.” The confidence interval that properly reflects the CFOs’ knowledge (more precisely, their ignorance) is more than 4 times wider than the intervals they actually stated.
Social psychology comes into the picture here, because the answer that a truthful CFO would offer is plainly ridiculous. A CFO who informs his colleagues that “th%">iere is a good chance that the S&P returns will be between –10% and +30%” can expect to be laughed out of the room. The wide confidence interval is a confession of ignorance, which is not socially acceptable for someone who is paid to be knowledgeable in financial matters. Even if they knew how little they know, the executives would be penalized for admitting it. President Truman famously asked for a “one-armed economist” who would take a clear stand; he was sick and tired of economists who kept saying, “On the other hand…”
Organizations that take the word of overconfident experts can expect costly consequences. The study of CFOs showed that those who were most confident and optimistic about the S&P index were also overconfident and optimistic about the prospects of their own firm, which went on to take more risk than others. As Nassim Taleb has argued, inadequate appreciation of the uncertainty of the environment inevitably leads economic agents to take risks they should avoid. However, optimism is highly valued, socially and in the market; people and firms reward the providers of dangerously misleading information more than they reward truth tellers. One of the lessons of the financial crisis that led to the Great Recession is that there are periods in which competition, among experts and among organizations, creates powerful forces that favor a collective blindness to risk and uncertainty.
The social and economic pressures that favor overconfidence are not restricted to financial forecasting. Other professionals must deal with the fact that an expert worthy of the name is expected to display high confidence. Philip Tetlock observed that the most overconfident experts were the most likely to be invited to strut their stuff in news shows. Overconfidence also appears to be endemic in medicine. A study of patients who died in the ICU compared autopsy results with the diagnosis that physicians had provided while the patients were still alive. Physicians also reported their confidence. The result: “clinicians who were ‘completely certain’ of the diagnosis antemortem were wrong 40% of the time.” Here again, expert overconfidence is encouraged by their clients: “Generally, it is considered a weakness and a sign of vulnerability for clinicians to appear unsure. Confidence is valued over uncertainty and there is a prevailing censure against disclosing uncertainty to patients.” Experts who acknowledge the full extent of their ignorance may expect to be replaced by more confident competitors, who are better able to gain the trust of clients. An unbiased appreciation of uncertainty is a cornerstone of rationality—but it is not what people and organizations want. Extreme uncertainty is paralyzing under dangerous circumstances, and the admission that one is merely guessing is especially unacceptable when the stakes are high. Acting on pretended knowledge is often the preferred solution.
When they come together, the emotional, cognitive, and social factors that support exaggerated optimism are a heady brew, which sometimes leads people to take risks that they would avoid if they knew the odds. There is no evidence that risk takers in the economic domain have an unusual appetite for gambles on high stakes; they are merely less aware of risks than more timid people are. Dan Lovallo and I coined the phrase “bold forecasts and timid decisions” to describe the background of risk taking.
The effects of high optimism on decision making are, at best, a mixed blessing, but the contribution of optimism to good implementation is certainly positive. The main benefit of optimism is resilience in the face of setbacks. According to Martin Seligman, the founder of potelsitive psychology, an “optimistic explanation style” contributes to resilience by defending one’s self-image. In essence, the optimistic style involves taking credit for successes but little blame for failures. This style can be taught, at least to some extent, and Seligman has documented the effects of training on various occupations that are characterized by a high rate of failures, such as cold-call sales of insurance (a common pursuit in pre-Internet days). When one has just had a door slammed in one’s face by an angry homemaker, the thought that “she was an awful woman” is clearly superior to “I am an inept salesperson.” I have always believed that scientific research is another domain where a form of optimism is essential to success: I have yet to meet a successful scientist who lacks the ability to exaggerate the importance of what he or she is doing, and I believe that someone who lacks a delusional sense of significance will wilt in the face of repeated experiences of multiple small failures and rare successes, the fate of most researchers.
The Premortem: A Partial Remedy
Can overconfident optimism be overcome by training? I am not optimistic. There have been numerous attempts to train people to state confidence intervals that reflect the imprecision of their judgments, with only a few reports of modest success. An often cited example is that geologists at Royal Dutch Shell became less overconfident in their assessments of possible drilling sites after training with multiple past cases for which the outcome was known. In other situations, overconfidence was mitigated (but not eliminated) when judges were encouraged to consider competing hypotheses. However, overconfidence is a direct consequence of features of System 1 that can be tamed—but not vanquished. The main obstacle is that subjective confidence is determined by the coherence of the story one has constructed, not by the quality and amount of the information that supports it.
Organizations may be better able to tame optimism and individuals than individuals are. The best idea for doing so was contributed by Gary Klein, my “adversarial collaborator” who generally defends intuitive decision making against claims of bias and is typically hostile to algorithms. He labels his proposal the
premortem
. The procedure is simple: when the organization has almost come to an important decision but has not formally committed itself, Klein proposes gathering for a brief session a group of individuals who are knowledgeable about the decision. The premise of the session is a short speech: “Imagine that we are a year into the future. We implemented the plan as it now exists. The outcome was a disaster. Please take 5 to 10 minutes to write a brief history of that disaster.”
Gary Klein’s idea of the premortem usually evokes immediate enthusiasm. After I described it casually at a session in Davos, someone behind me muttered, “It was worth coming to Davos just for this!” (I later noticed that the speaker was the CEO of a major international corporation.) The premortem has two main advantages: it overcomes the groupthink that affects many teams once a decision appears to have been made, and it unleashes the imagination of knowledgeable individuals in a much-needed direction.
As a team converges on a decision—and especially when the leader tips her hand—public doubts about the wisdom of the planned move are gradually suppressed and eventually come to be treated as evidence of flawed loyalty to the team and its leaders. The suppression of doubt contributes to overconfidence in a group where only supporters of the decision have a v filepos-id="filepos726557">
Speaking of Optimism
“They have an illusion of control. They seriously underestimate the obstacles.”
“They seem to suffer from an acute case of competitor neglect.”
“This is a case of overconfidence. They seem to believe they know more than they actually do know.”
“We should conduct a premortem session. Someone may come up with a threat we have neglected.”
One day in the early 1970s, Amos handed me a mimeographed essay by a Swiss economist named Bruno Frey, which discussed the psychological assumptions of economic theory. I vividly remember the color of the cover: dark red. Bruno Frey barely recalls writing the piece, but I can still recite its first sentence: “The agent of economic theory is rational, selfish, and his tastes do not change.”
I was astonished. My economist colleagues worked in the building next door, but I had not appreciated the profound difference between our intellectual worlds. To a psychologist, it is self-evident that people are neither fully rational nor completely selfish, and that their tastes are anything but stable. Our two disciplines seemed to be studying different species, which the behavioral economist Richard Thaler later dubbed Econs and Humans.
Unlike Econs, the Humans that psychologists know have a System 1. Their view of the world is limited by the information that is available at a given moment (WYSIATI), and therefore they cannot be as consistent and logical as Econs. They are sometimes generous and often willing to contribute to the group to which they are attached. And they often have little idea of what they will like next year or even tomorrow. Here was an opportunity for an interesting conversation across the boundaries of the disciplines. I did not anticipate that my career would be defined by that conversation.
Soon after he showed me Frey’s article, Amos suggested that we make the study of decision making our next project. I knew next to nothing about the topic, but Amos was an expert and a star of the field, and he
, and he directed me to a few chapters that he thought would be a good introduction.
I soon learned that our subject matter would be people’s attitudes to risky options and that we would seek to answer a specific question: What rules govern people’s choices between different simple gambles and between gambles and sure things?
Simple gambles (such as “40% chance to win $300”) are to students of decision making what the fruit fly is to geneticists. Choices between such gambles provide a simple model that shares important features with the more complex decisions that researchers actually aim to understand. Gambles represent the fact that the consequences of choices are never certain. Even ostensibly sure outcomes are uncertain: when you sign the contract to buy an apartment, you do not know the price at which you later may have to sell it, nor do you know that your neighbor’s son will soon take up the tuba. Every significant choice we make in life comes with some uncertainty—which is why students of decision making hope that some of the lessons learned in the model situation will be applicable to more interesting everyday problems. But of course the main reason that decision theorists study simple gambles is that this is what other decision theorists do.
The field had a theory, expected utility theory, which was the foundation of the rational-agent model and is to this day the most important theory in the social sciences. Expected utility theory was not intended as a psychological model; it was a logic of choice, based on elementary rules (axioms) of rationality. Consider this example:
If you prefer an apple to a banana,
then
you also prefer a 10% chance to win an apple to a 10% chance to win a banana.
The apple and the banana stand for any objects of choice (including gambles), and the 10% chance stands for any probability. The mathematician John von Neumann, one of the giant intellectual figures of the twentieth century, and the economist Oskar Morgenstern had derived their theory of rational choice between gambles from a few axioms. Economists adopted expected utility theory in a dual role: as a logic that prescribes how decisions should be made, and as a description of how Econs make choices. Amos and I were psychologists, however, and we set out to understand how Humans actually make risky choices, without assuming anything about their rationality.
We maintained our routine of spending many hours each day in conversation, sometimes in our offices, sometimes at restaurants, often on long walks through the quiet streets of beautiful Jerusalem. As we had done when we studied judgment, we engaged in a careful examination of our own intuitive preferences. We spent our time inventing simple decision problems and asking ourselves how we would choose. For example:
Which do you prefer?
A. Toss a coin. If it comes up heads you win $100, and if it comes up tails you win nothing.
B. Get $46 for sure.
We were not trying to figure out the mos BineithWe t rational or advantageous choice; we wanted to find the intuitive choice, the one that appeared immediately tempting. We almost always selected the same option. In this example, both of us would have picked the sure thing, and you probably would do the same. When we confidently agreed on a choice, we believed—almost always correctly, as it turned out—that most people would share our preference, and we moved on as if we had solid evidence. We knew, of course, that we would need to verify our hunches later, but by playing the roles of both experimenters and subjects we were able to move quickly.
Five years after we began our study of gambles, we finally completed an essay that we titled “Prospect Theory: An Analysis of Decision under Risk.” Our theory was closely modeled on utility theory but departed from it in fundamental ways. Most important, our model was purely descriptive, and its goal was to document and explain systematic violations of the axioms of rationality in choices between gambles. We submitted our essay to
Econometrica
, a journal that publishes significant theoretical articles in economics and in decision theory. The choice of venue turned out to be important; if we had published the identical paper in a psychological journal, it would likely have had little impact on economics. However, our decision was not guided by a wish to influence economics;
Econometrica
just happened to be where the best papers on decision making had been published in the past, and we were aspiring to be in that company. In this choice as in many others, we were lucky. Prospect theory turned out to be the most significant work we ever did, and our article is among the most often cited in the social sciences. Two years later, we published in
Science
an account of framing effects: the large changes of preferences that are sometimes caused by inconsequential variations in the wording of a choice problem.
During the first five years we spent looking at how people make decisions, we established a dozen facts about choices between risky options. Several of these facts were in flat contradiction to expected utility theory. Some had been observed before, a few were new. Then we constructed a theory that modified expected utility theory just enough to explain our collection of observations. That was prospect theory.
Our approach to the problem was in the spirit of a field of psychology called psychophysics, which was founded and named by the German psychologist and mystic Gustav Fechner (1801–1887). Fechner was obsessed with the relation of mind and matter. On one side there is a physical quantity that can vary, such as the energy of a light, the frequency of a tone, or an amount of money. On the other side there is a subjective experience of brightness, pitch, or value. Mysteriously, variations of the physical quantity cause variations in the intensity or quality of the subjective experience. Fechner’s project was to find the psychophysical laws that relate the subjective quantity in the observer’s mind to the objective quantity in the material world. He proposed that for many dimensions, the function is logarithmic—which simply means that an increase of stimulus intensity by a given factor (say, times 1.5 or times 10) always yields the same increment on the psychological scale. If raising the energy of the sound from 10 to 100 units of physical energy increases psychological intensity by 4 units, then a further increase of stimulus intensity from 100 to 1,000 will also increase psychological intensity by 4 units.
Bernoulli’s Error
As Fechner well knew, he was not the first to look for a function that rel Binepitze="4">
) and the actual amount of money. He argued that a gift of 10 ducats has the same utility to someone who already has 100 ducats as a gift of 20 ducats to someone whose current wealth is 200 ducats. Bernoulli was right, of course: we normally speak of changes of income in terms of percentages, as when we say “she got a 30% raise.” The idea is that a 30% raise may evoke a fairly similar psychological response for the rich and for the poor, which an increase of $100 will not do. As in Fechner’s law, the psychological response to a change of wealth is inversely proportional to the initial amount of wealth, leading to the conclusion that utility is a logarithmic function of wealth. If this function is accurate, the same psychological distance separates $100,000 from $1 million, and $10 million from $100 million.
Bernoulli drew on his psychological insight into the utility of wealth to propose a radically new approach to the evaluation of gambles, an important topic for the mathematicians of his day. Prior to Bernoulli, mathematicians had assumed that gambles are assessed by their expected value: a weighted average of the possible outcomes, where each outcome is weighted by its probability. For example, the expected value of:
80% chance to win $100 and 20% chance to win $10 is $82 (0.8 × 100 + 0.2 × 10).
Now ask yourself this question: Which would you prefer to receive as a gift, this gamble or $80 for sure? Almost everyone prefers the sure thing. If people valued uncertain prospects by their expected value, they would prefer the gamble, because $82 is more than $80. Bernoulli pointed out that people do not in fact evaluate gambles in this way.
Bernoulli observed that most people dislike risk (the chance of receiving the lowest possible outcome), and if they are offered a choice between a gamble and an amount equal to its expected value they will pick the sure thing. In fact a risk-averse decision maker will choose a sure thing that is less than expected value, in effect paying a premium to avoid the uncertainty. One hundred years before Fechner, Bernoulli invented psychophysics to explain this aversion to risk. His idea was straightforward: people’s choices are based not on dollar values but on the psychological values of outcomes, their utilities. The psychological value of a gamble is therefore not the weighted average of its possible dollar outcomes; it is the average of the utilities of these outcomes, each weighted by its probability.
Table 3 shows a version of the utility function that Bernoulli calculated; it presents the utility of different levels of wealth, from 1 million to 10 million. You can see that adding 1 million to a wealth of 1 million yields an increment of 20 utility points, but adding 1 million to a wealth of 9 million adds only 4 points. Bernoulli proposed that the diminishing marginal value of wealth (in the modern jargon) is what explains risk aversion—the common preference that people generally show for a sure thing over a favorable gamble of equal or slightly higher expected value. Consider this choice:
Table 3
The expected value of the gamble and the “sure thing” are equal in ducats (4 million), but the psychological utilities of the two options are different, because of the diminishing utility of wealth: the increment of utility from 1 million to 4 million is 50 units, but an equal increment, from 4 to 7 million, increases the utility of wealth by only 24 units. The utility of the gamble is 94/2 = 47 (the utility of its two outcomes, each weighted by its probability of 1/2). The utility of 4 million is 60. Because 60 is more than 47, an individual with this utility function will prefer the sure thing. Bernoulli’s insight was that a decision maker with diminishing marginal utility for wealth will be risk averse.