Read The Fabric of the Cosmos: Space, Time, and the Texture of Reality Online

Authors: Brian Greene

Tags: #Science, #Cosmology, #Popular works, #Astronomy, #Physics, #Universe

The Fabric of the Cosmos: Space, Time, and the Texture of Reality (71 page)

7. Mathematically, the cosmological constant is represented by a number, usually denoted by (see note 4). Einstein found that his equations made perfect sense regardless of whether was chosen to be a positive or a negative number. The discussion in the text focuses on the case of particular interest to modern cosmology (and modern observations, as will be discussed) in which is positive, since this gives rise to negative pressure and repulsive gravity. A negative value for yields ordinary attractive gravity. Note, too, that since the pressure exerted by the cosmological constant is uniform, this pressure does not directly exert any force: only pressure differences, like what your ears feel when you're underwater, result in a pressure force. Instead, the force exerted by the cosmological constant is purely a gravitational force.

8. Familiar magnets always have both a north and a south pole. By contrast, grand unified theories suggest that there may be particles that are like a purely north or purely south magnetic pole. Such particles are called monopoles and they could have a major impact on standard big bang cosmology. They have never been observed.

9. Guth and Tye recognized that a supercooled Higgs field would act like a cosmological constant, a realization that had been made earlier by Martinus Veltman and others. In fact, Tye has told me that were it not for a page limit in
Physical Review Letters,
the journal to which he and Guth submitted their paper, they would not have struck a final sentence noting that their model would entail a period of exponential expansion. But Tye also notes that it was Guth's achievement to realize the important cosmological implications of a period of exponential expansion (to be discussed later in this and in the next chapter), and thereby put inflation front and center on cosmologists' maps.

In the sometimes convoluted history of discovery, the Russian physicist Alexei Starobinsky had, a few years earlier, found a different means of generating what we now call inflationary expansion, work described in a paper that was not widely known among western scientists. However, Starobinsky did not emphasize that a period of such rapid expansion would solve key cosmological problems (such as the horizon and flatness problems, to be discussed shortly), which explains, in part, why his work did not generate the enthusiastic response that Guth's received. In 1981, the Japanese physicist Katsuhiko Sato also developed a version of inflationary cosmology, and even earlier (in 1978), Russian physicists Gennady Chibisov and Andrei Linde hit upon the idea of inflation, but they realized that—when studied in detail—it suffered from a key problem (discussed in note 11) and hence did not publish their work.

The mathematically inclined reader should note that it is not difficult to see how accelerated expansion arises. One of Einstein's equations is d
2
a/dt
2
/a = -4/3( + 3p) where
a,
, and
p
are the scale factor of the universe (its "size"), the energy density, and the pressure density, respectively. Notice that if the righthand side of this equation is positive, the scale factor will grow at an increasing rate: the universe's rate of growth will accelerate with time. For a Higgs field perched on a plateau, its pressure density turns out to equal the negative of its energy density (the same is true for a cosmological constant), and so the righthand side is indeed positive.

10. The physics underlying these quantum jumps is the uncertainty principle, covered in Chapter 4. I will explicitly discuss the application of quantum uncertainty to fields in both Chapter 11 and Chapter 12, but to presage that material, briefly note the following. The value of a field at a given point in space, and the rate of change of the field's value at that point, play the same role for fields as position and velocity (momentum) play for a particle. Thus, just as we can't ever know both a definite position and a definite velocity for a particle, a field can't have a definite value and a definite rate of change of that value, at any given point in space. The more definite the field's value is at one moment, the more uncertain is the rate of change of that value—that is, the more likely it is that the field's value will change a moment later. And such change, induced by quantum uncertainty, is what I mean when referring to quantum jumps in the field's value.

11. The contribution of Linde and of Albrecht and Steinhardt was absolutely crucial, because Guth's original model—now called
old inflation—
suffered from a pernicious flaw. Remember that the supercooled Higgs field (or, in the terminology we introduce shortly, the
inflaton
field) has a value that is perched on the bump in its energy bowl
uniformly
across space. And so, while I've described how quickly the supercooled inflaton field could take the jump to the lowest energy value, we need to ask whether this quantum-induced jump would happen everywhere in space at the same time. And the answer is that it wouldn't. Instead, as Guth argued, the relaxation of the inflaton field to a zero energy value takes place by a process called bubble nucleation: the inflaton drops to its zero energy value at one point in space, and this sparks an outward-spreading bubble, one whose walls move at light speed, in which the inflaton drops to the zero energy value with the passing of the bubble wall. Guth envisioned that many such bubbles, with random centers, would ultimately coalesce to give a universe with zero-energy inflaton field everywhere. The problem, though, as Guth himself realized, was that the space surrounding the bubbles was still infused with a non-zero-energy inflaton field, and so such regions would continue to undergo rapid inflationary expansion, driving the bubbles apart. Hence, there was no guarantee that the growing bubbles would find one another and coalesce into a large, homogeneous spatial expanse. Moreover, Guth argued that the inflaton field energy was not lost as it relaxed to zero energy, but was converted to ordinary particles of matter and radiation inhabiting the universe. To achieve a model compatible with observations, though, this conversion would have to yield a
uniform
distribution of matter and energy throughout space. In the mechanism Guth proposed, this conversion would happen through the collision of bubble walls, but calculations—carried out by Guth and Erick Weinberg of Columbia University, and also by Stephen Hawking, Ian Moss, and John Steward of Cambridge University—revealed that the resulting distribution of matter and energy was
not
uniform. Thus, Guth's original inflationary model ran into significant problems of detail.

The insights of Linde and of Albrecht and Steinhardt—now called
new inflation—
fixed these vexing problems. By changing the shape of the potential energy bowl to that in Figure 10.2, these researchers realized, the inflaton could relax to its zero energy value by "rolling" down the energy hill to the valley, a gradual and graceful process that had no need for the quantum jump of the original proposal. And, as their calculations showed, this somewhat more gradual rolling down the hill sufficiently prolonged the inflationary burst of space so that one single bubble easily grew large enough to encompass the entire observable universe. Thus, in this approach, there is no need to worry about coalescing bubbles. What was of equal importance, rather than converting the inflaton field's energy to that of ordinary particles and radiation through bubble collisions, in the new approach the inflaton gradually accomplished this energy conversion uniformly throughout space by a process akin to friction: as the field rolled down the energy hill—uniformly throughout space—it gave up its energy by "rubbing against" (interacting with) more familiar fields for particles and radiation. New inflation thus retained all the successes of Guth's approach, but patched up the significant problem it had encountered.

About a year after the important progress offered by new inflation, Andrei Linde had another breakthrough. For new inflation to occur successfully, a number of key elements must all fall into place: the potential energy bowl must have the right shape, the inflaton field's value must begin high up on the bowl (and, somewhat more technically, the inflaton field's value must itself be uniform over a sufficiently large spatial expanse). While it's possible for the universe to achieve such conditions, Linde found a way to generate an inflationary burst in a simpler, far less contrived setting. Linde realized that even with a simple potential energy bowl, such as that in Figure 9.1a, and even without finely arranging the inflaton field's initial value, inflation could still naturally take place. The idea is this. Imagine that in the very early universe, things were "chaotic"—for example, imagine that there was an inflaton field whose value randomly bounced around from one number to another. At some locations in space its value might have been small, at other locations its value might have been medium, and at yet other locations in space its value might have been high. Now, nothing particularly noteworthy would have happened in regions where the field value was small or medium. But Linde realized that something fantastically interesting would have taken place in regions where the inflaton field happened to have attained a high value (even if the region were tiny, a mere 10
-33
centimeters across). When the inflaton field's value is high—when it is high up on the energy bowl in Figure 9.1a— a kind of cosmic friction sets in: the field's value tries to roll down the hill to lower potential energy, but its high value contributes to a resistive drag force, and so it rolls very slowly. Thus, the inflaton field's value would have been nearly constant and (much like an inflaton on the top of the potential energy hill in new inflation) would have contributed a nearly constant energy and a nearly constant negative pressure. As we are now very familiar, these are the conditions required to drive a burst of inflationary expansion. Thus, without invoking a particularly special potential energy bowl, and without setting up the inflaton field in a special configuration, the chaotic environment of the early universe could have naturally given rise to inflationary expansion. Not surprisingly, Linde had called this approach
chaotic inflation.
Many physicists consider it the most convincing realization of the inflationary paradigm.

12. Those familiar with the history of this subject will realize that the excitement over Guth's discovery was generated by its solutions to key cosmological problems, such as the horizon and flatness problems, as we describe shortly.

13. You might wonder whether the electroweak Higgs field, or the grand unified Higgs field, can do double duty—playing the role we described in Chapter 9, while also driving inflationary expansion at earlier times, before forming a Higgs ocean. Models of this sort have been proposed, but they typically suffer from technical problems. The most convincing realizations of inflationary expansion invoke a new Higgs field to play the role of the inflaton.

14. See note 11, this chapter.

15. For example, you can think of our horizon as a giant, imaginary sphere, with us at its center, that separates those things with which we could have communicated (the things within the sphere) from those things with which we couldn't have communicated (those things beyond the sphere), in the time since the bang. Today, the radius of our "horizon sphere" is roughly 14 billion light-years; early on in the history of the universe, its radius was much less, since there had been less time for light to travel. See also note 10 from Chapter 8.

16. While this is the essence of how inflationary cosmology solves the horizon problem, to avoid confusion let me highlight a key element of the solution. If one night you and a friend are standing on a large field happily exchanging light signals by turning flashlights on and off, notice that no matter how fast you then turn and run from each other, you will
always
be able subsequently to exchange light signals. Why? Well, to avoid receiving the light your friend shines your way, or for your friend to avoid receiving the light you send her way, you'd need to run from each other at faster than light speed, and that's impossible. So, how is it possible for regions of space that were able to exchange light signals early on in the universe's history (and hence come to the same temperature, for example) to now find themselves beyond each other's communicative range? As the flashlight example makes clear, it must be that they've rushed apart at faster than the speed of light. And, indeed, the colossal outward push of repulsive gravity during the inflationary phase
did
drive every region of space away from every other at much faster than the speed of light. Again, this offers no contradiction with special relativity, since the speed limit set by light refers to motion through space, not motion from the swelling of space itself. So a novel and important feature of inflationary cosmology is that it involves a short period in which there is superluminal expansion of space.

17. Note that the numerical value of the critical density decreases as the universe expands. But the point is that if the actual mass/energy density of the universe is equal to the critical density at one time, it will decrease in exactly the same way and maintain equality with the critical density at all times.

18. The mathematically inclined reader should note that during the inflationary phase, the size of our cosmic horizon stayed fixed while space swelled enormously (as can easily be seen by taking an exponential form for the scale factor in note 10 of Chapter 8). That is the sense in which our observable universe is a tiny speck in a gigantic cosmos, in the inflationary framework.

19. R. Preston,
First Light
(New York: Random House Trade Paperbacks, 1996), p. 118.

20. For an excellent general-level account of dark matter, see L. Krauss, Quintes
sence:The Mystery of Missing Mass in the Universe
(New York: Basic Books, 2000).

Other books

Blaggard's Moon by George Bryan Polivka
Cowboy & the Captive by Lora Leigh
Dark Trail by Ed Gorman
Cameo the Assassin by Dawn McCullough-White
District 69 by Jenna Powers
Surrendering to Us by Chelsea M. Cameron
Dinosaur Boy Saves Mars by Cory Putman Oakes
The Balloon Man by Charlotte MacLeod


readsbookonline.com Copyright 2016 - 2024