Read The Age of Spiritual Machines: When Computers Exceed Human Intelligence Online

Authors: Ray Kurzweil

Tags: #Non-Fiction, #Fringe Science, #Amazon.com, #Retail, #Science

The Age of Spiritual Machines: When Computers Exceed Human Intelligence (3 page)

For example, if a person scans his brain through a noninvasive scanning technology of the twenty-first century (such as an advanced magnetic resonance imaging), and downloads his mind to his personal computer, is the “person” who emerges in the machine the same consciousness as the person who was scanned? That “person” may convincingly implore you that “he” grew up in Brooklyn, went to college in Massachusetts, walked into a scanner here, and woke up in the machine there. The original person who was scanned, on the other hand, will acknowledge that the person in the machine does indeed appear to share his history, knowledge, memory, and personality, but is otherwise an impostor, a different person.
Even if we limit our discussion to computers that are not directly derived from a particular human brain, they will increasingly appear to have their own personalities, evidencing reactions that we can only label as emotions and articulating their own goals and purposes. They will appear to have their own free will. They will claim to have spiritual experiences. And people—those still using carbon-based neurons or otherwise—will believe them.
One often reads predictions of the next several decades discussing a variety of demographic, economic, and political trends that largely ignore the revolutionary impact of machines with their own opinions and agendas. Yet we need to reflect on the implications of the gradual, yet inevitable, emergence of true competition to the full range of human thought in order to comprehend the world that lies ahead.
PART ONE
 
PROBING THE PAST
 
CHAPTER ONE
 
THE LAW OF TIME AND CHAOS
 
A (VERY BRIEF) HISTORY OF THE UNIVERSE: TIME SLOWING DOWN
 
The universe is made of stories, not of atoms.
—Muriel Rukeyser
 
 
Is the universe a great mechanism, a great computation, a great symmetry, a great accident or a great thought?
—John D. Barrow
 
 
As we start at the beginning, we will notice an unusual attribute of the nature of time, one that is critical to our passage to the twenty-first century. Our story begins perhaps 15 billion years ago. No conscious life existed to appreciate the birth of our Universe at the time, but we appreciate it now, so retroactively it did happen. (In retrospect—from one perspective of quantum mechanics—we could say that any Universe that fails to evolve conscious life to apprehend its existence never existed in the first place.)
It was not until 10
-43
seconds (a tenth of a millionth of a trillionth of a trillionth of a trillionth of a second) after the birth of the Universe
1
that the situation had cooled off sufficiently (to 100 million trillion trillion degrees) that a distinct force—gravity—evolved.
Not much happened for another 10
-34
seconds (this is also a very tiny fraction of a second, but it is a billion times longer than 10
-43
seconds), at which point an even cooler Universe (now only a billion billion billion degrees) allowed the emergence of matter in the form of electrons and quarks. To keep things balanced, antimatter appeared as well. It was an eventful time, as new forces evolved at a rapid rate. We were now up to three: gravity, the strong force,
2
and the electroweak force.
3
After another 10
-10
seconds (a tenth of a billionth of a second), the electroweak force split into the electromagnetic and weak forces
4
we know so well today.
Things got complicated after another 10
-5
seconds (ten millionths of a second). With the temperature now down to a relatively balmy trillion degrees, the quarks came together to form protons and neutrons. The antiquarks did the. same, forming antiprotons.
Somehow, the matter particles achieved a slight edge. How this happened is not entirely clear. Up until then, everything had seemed, so, well, even. But had everything stayed evenly balanced, it would have been a rather boring Universe. For one thing, life never would have evolved, and thus we could conclude that the Universe would never have existed in the first place.
For every 10 billion antiprotons, the Universe contained 10 billion and 1 protons. The protons and antiprotons collided, causing the emergence of another important phenomenon: light (photons). Thus, almost all of the antimatter was destroyed, leaving matter as dominant. (This shows you the danger of allowing a competitor to achieve even a slight advantage.)
Of course, had antimatter won, its descendants would have called it matter and would have called matter antimatter, so we would be back where we started (perhaps that is what happened).
After another second (a second is a very long time compared to some of the earlier chapters in the Universe’s history, so notice how the time frames are growing exponentially larger), the electrons and antielectrons (called positrons) followed the lead of the protons and antiprotons and similarly annihilated each other, leaving mostly the electrons.
After another minute, the neutrons and protons began coalescing into heavier nuclei, such as helium, lithium, and heavy forms of hydrogen. The temperature was now only a billion degrees.
About 300,000 years later (things are slowing down now rather quickly), with the average temperature now only 3,000 degrees, the first atoms were created as the nuclei took control of nearby electrons.
After a billion years, these atoms formed large clouds that gradually swirled into galaxies.
After another two billion years, the matter within the galaxies coalesced further into distinct stars, many with their own solar systems.
Three billion years later, circling an unexceptional star on the arm of a common galaxy, an unremarkable planet we call the Earth was born.
Now before we go any further, let’s notice a striking feature of the passage of time. Events moved quickly at the beginning of the Universe’s history We had three paradigm shifts in just the first billionth of a second. Later on, events of cosmological significance took billions of years. The nature of time is that it inherently moves in an exponential fashion—either geometrically gaining in speed, or, as in the history of our Universe, geometrically slowing down. Time only seems to be linear during those eons in which not much happens. Thus most of the time, the linear passage of time is a reasonable approximation of its passage. But that’s not the inherent nature of time.
Why is this significant? It’s not when you’re stuck in the eons in which not much happens. But it is of great significance when you find yourself in the “knee of the curve,” those periods in which the exponential nature of the curve of time explodes either inwardly or outwardly. It’s like falling into a black hole (in that case, time accelerates exponentially faster as one falls in).
The Speed of Time
 
But wait a second, how can we say that time is changing its “speed”? We can talk about the rate of a process, in terms of its progress per second, but can we say that time is changing its rate? Can time start moving at, say, two seconds per second?
Einstein said exactly this—time is relative to the entities experiencing it.
5
One man’s second can be another woman’s forty years. Einstein gives the example of a man who travels at very close to the speed of light to a star—say, twenty light-years away. From our Earth-bound perspective, the trip takes slightly more than twenty years in each direction. When the man gets back, his wife has aged forty years. For him, however, the trip was rather brief. If he travels at close enough to the speed of light, it may have only taken a second or less (from a practical perspective we would have to consider some limitations, such as the time to accelerate and decelerate without crushing his body). Whose time frame is the correct one? Einstein says they are both correct, and exist only relative to each other.
Certain species of birds have a life span of only several years. If you observe their rapid movements, it appears that they are experiencing the passage of time on a different scale. We experience this in our own lives. A young child’s rate of change and experience of time is different from that of an adult. Of particular note, we will see that the acceleration in the passage of time for evolution is moving in a different direction than that for the Universe from which it emerges.
It is in the nature of exponential growth that events develop extremely slowly for extremely long periods of time, but as one glides through the knee of the curve, events erupt at an increasingly furious pace. And that is what we will experience as we enter the twenty-first century.
EVOLUTION: TIME SPEEDING UP
 
In the beginning was the word.... And the word became flesh.
—John 1:1,14
 
A great deal of the universe does not need any explanation. Elephants, for instance. Once molecules have learnt to compete and create other molecules in
their own image, elephants, and things resembling elephants, will in due course be found roaming through the countryside.
—Peter Atkins
 
 
The further backward you look, the further forward you can see.
—Winston Churchill
 
 
We’ll come back to the knee of the curve, but let’s delve further into the exponential nature of time. In the nineteenth century, a set of unifying principles called the laws of thermodynamics
6
was postulated. As the name implies, they deal with the dynamic nature of heat and were the first major refinement of the laws of classical mechanics perfected by Isaac Newton a century earlier. Whereas Newton had described a world of clockwork perfection in which particles and objects of all sizes followed highly disciplined, predictable patterns, the laws of thermodynamics describe a world of chaos. Indeed, that is what heat is. Heat is the chaotic—unpredictable—movement of the particles that make up the world. A corollary of the second law of thermodynamics is that in a closed system (interacting entities and forces not subject to outside influence; for example, the Universe), disorder (called “entropy”) increases. Thus, left to its own devices, a system such as the world we live in becomes increasingly chaotic. Many people find this describes their lives rather well. But in the nineteenth century, the laws of thermodynamics were considered a disturbing discovery. At the beginning of that century, it appeared that the basic principles governing the world were both understood and orderly. There were a few details left to be filled in, but the basic picture was under control. Thermodynamics was the first contradiction to this complacent picture. It would not be the last.
The second law of thermodynamics, sometimes called the Law of Increasing Entropy, would seem to imply that the natural emergence of intelligence is impossible. Intelligent behavior is the opposite of random behavior, and any system capable of intelligent responses to its environment needs to be highly ordered. The chemistry of life, particularly of intelligent life, is comprised of exceptionally intricate designs. Out of the increasingly chaotic swirl of particles and energy in the world, extraordinary designs somehow emerged. How do we reconcile the emergence of intelligent life with the Law of Increasing Entropy?
There are two answers here. First, while the Law of Increasing Entropy would appear to contradict the thrust of evolution, which is toward increasingly elaborate order, the two phenomena are not inherently contradictory The order of life takes place amid great chaos, and the existence of life-forms does not appreciably affect the measure of entropy in the larger system in which life has evolved. An organism is not a closed system. It is part of a larger system we call the environment, which remains high in entropy. In other words, the order represented by the existence of life-forms is insignificant in terms of measuring overall entropy.
Thus, while chaos increases in the Universe, it is possible for evolutionary processes that create increasingly intricate, ordered patterns to exist simultaneously.
7
Evolution is a process, but it is not a closed system. It is subject to outside influence, and indeed draws upon the chaos in which it is embedded. So the Law of Increasing Entropy does not rule out the emergence of life and intelligence.
For the second answer, we need to take a closer look at evolution, as it was the original creator of intelligence.
The Exponentially Quickening Pace of Evolution
 
As you will recall, after billions of years, the unremarkable planet called Earth was formed. Churned by the energy of the sun, the elements formed more and more complex molecules. From physics, chemistry was born.
Two billion years later, life began. That is to say,
patterns of matter and energy that could perpetuate themselves and survive perpetuated themselves and survived.
That this apparent tautology went unnoticed until a couple of centuries ago is itself remarkable.

Other books

The Mayfair Moon by J. A. Redmerski
A Night Without Stars by Jillian Eaton
CovertDesires by Chandra Ryan
Floor Time by Liz Crowe
Two Rivers by T. Greenwood
Azazeel by Ziedan, Youssef
El enigma de la Atlántida by Charles Brokaw
He's Got Her Goat by Christine


readsbookonline.com Copyright 2016 - 2024