Read Stiff Online

Authors: Mary Roach

Stiff (7 page)

[
1]
Which was also, up until 1965, not a crime in any U.S. state. When necrophilia's best-known modern-day practitioner, Sacramento mortuary worker Karen Greenlee, was caught absconding with a dead young man in 1979, she was fined for illegally driving a hearse but not for the act itself, as California had no statutes regarding sex with the dead. To date, only sixteen states have enacted necrophilia laws. The language used by each state reflects its particular character. While taciturn Minnesota refers to those who "carnally know a dead body," freewheeling Nevada spells it all out: "It is a felony to engage in cunnilingus, fellatio, or any intrusion of any part of a person's body, or any object manipulated or inserted by a person into the genital or anal openings of the body of another where the offender performs these acts on the dead body of a human being."

[
2]
How could people of the nineteenth century have allowed teeth from cadavers to be put into their mouths? The same way people from the twenty-first century can allow tissue from cadavers to be injected into their faces to fill wrinkles. They possibly didn't know and probably didn't care.

[
3]
With the help of an interpreter, I got the number of an Oscar Rafael Hernandez living in Barranquilla. A woman answered the phone and said that Oscar was not in, whereupon my interpreter gamely asked her if Oscar was a garbage picker, and if he had been almost murdered by thugs who wanted to sell him to a medical school for dissection. A barrage of agitated Spanish ensued, which my interpreter summed up:

"It's the wrong Oscar Rafael Hernandez."

[
4]
Sheena Jones, the secretary at the college who told me about the wallet—which she called a "pocket book," nearly leading me to write that ladies' handbags had been made from Burke's hide—said it had been donated by one George Chiene, now deceased. Mrs. Jones did not know who had made or originally owned the wallet or whether Mr. Chiene had ever kept his money in it, but she observed that it looked like any other brown leather wallet and that "you would not know it is made from human skin."

3

Life After Death

On human decay and what can be done about it

Out behind the University of Tennessee Medical Center is a lovely, forested grove with squirrels leaping in the branches of hickory trees and birds calling and patches of green grass where people lie on their backs in the sun, or sometimes the shade, depending on where the researchers put them.

This pleasant Knoxville hillside is a field research facility, the only one in the world dedicated to the study of human decay. The people lying in the sun are dead. They are donated cadavers, helping, in their mute, fragrant way, to advance the science of criminal forensics. For the more you know about how dead bodies decay—the biological and chemical phases they go through, how long each phase lasts, how the environment affects these phases—the better equipped you are to figure out when any given body died: in other words, the day and even the approximate time of day it was murdered. The police are pretty good at pinpointing approximate time of death in recently dispatched bodies. The potassium level of the gel inside the eyes is helpful during the first twenty-four hours, as is algor mortis— the cooling of a dead body; barring temperature extremes, corpses lose about 1.5 degrees Fahrenheit per hour until they reach the temperature of the air around them. (Rigor mortis is more variable: It starts a few hours after death, usually in the head and neck, and continues, moving on down the body, finishing up and disappearing anywhere from ten to forty-eight hours after death.) If a body has been dead longer than three days, investigators turn to entomological clues (e.g., how old are these fly larvae?) and stages of decay for their answers. And decay is highly dependent on environmental and situational factors. What's the weather been like? Was the body buried? In what? Seeking better understanding of the effects of these factors, the University of Tennessee (UT) Anthropological Research Facility, as it is blandly and vaguely called, has buried bodies in shallow graves, encased them in concrete, left them in car trunks and man-made ponds, and wrapped them in plastic bags. Pretty much anything a killer might do to dispose of a dead body the researchers at UT have done also.

To understand how these variables affect the time line of decomposition, you must be intimately acquainted with your control scenario: basic, unadulterated human decay. That's why I'm here. That's what I want to know: When you let nature take its course, just exactly what course does it take?

My guide to the world of human disassembly is a patient, amiable man named Arpad Vass. Vass has studied the science of human decomposition for more than a decade. He is an adjunct research professor of forensic anthropology at UT and a senior staff scientist at the nearby Oak Ridge National Laboratory. One of Arpad's projects at ORNL

has been to develop a method of pinpointing time of death by analyzing tissue samples from the victim's organs and measuring the amounts of dozens of different time-dependent decay chemicals. This profile of decay chemicals is then matched against the typical profiles for that tissue for each passing postmortem hour. In test runs, Arpad's method has determined the time of death to within plus or minus twelve hours.

The samples he used to establish the various chemical breakdown time lines came from bodies at the decay facility. Eighteen bodies, some seven hundred samples in all. It was an unspeakable task, particularly in the later stages of decomposition, and particularly for certain organs. "We'd have to roll the bodies over to get at the liver," recalls Arpad. The brain he got to using a probe through the eye orbit. Interestingly, neither of these activities was responsible for Arpad's closest brush with on-the-job regurgitation. "One day last summer," he says weakly, "I
inhaled
a fly. I could feel it buzzing down my throat."

I have asked Arpad what it's like to do this sort of work. "What do you mean?" he asked me back. "You want a vivid description of what's going through my brain as I'm cutting through a liver and all these larvae are spilling out all over me and juice pops out of the intestines?" I kind of did, but I kept quiet. He went on: "I don't really focus on that. I try to focus on the value of the work. It takes the edge off the grotesqueness."

As for the humanness of his specimens, that no longer disturbs him.

Though it once did. He used to lay the bodies on their stomachs so he didn't have to see their faces.

This morning, Arpad and I are riding in the back of a van being driven by the lovable and agreeable Ron Walli, one of ORNL's media relations guys. Ron pulls into a row of parking spaces at the far end of the UT

Medical Center lot, labeled G section. On hot summer days, you can always find a parking space in G section, and not just because it's a longer walk to the hospital. G section is bordered by a tall wooden fence topped with concertina wire, and on the other side of the fence are the bodies. Arpad steps down from the van. "Smell's not that bad today," he says. His "not that bad" has that hollow, over-upbeat tone one hears when spouses back over flowerbeds or home hair coloring goes awry.

Ron, who began the trip in a chipper mood, happily pointing out landmarks and singing along with the radio, has the look of a condemned man. Arpad sticks his head in the window. "Are you coming in, Ron, or are you going to hide in the car again?" Ron steps out and glumly follows. Although this is his fourth time in, he says he'l never get used to it. It's not the fact that they're dead—Ron saw accident victims routinely in his former post as a newspaper reporter—it's the sights and smells of decay. "The smell just stays with you," he says. "Or that's what you imagine. I must have washed my hands and face twenty times after I got back from my first time out here."

Just inside the gate are two old-fashioned metal mailboxes on posts, as though some of the residents had managed to convince the postal service that death, like rain or sleet or hail, should not stay the regular delivery of the U.S. Mail. Arpad opens one and pulls turquoise rubber surgical gloves from a box, two for him and two for me. He knows not to offer them to Ron.

"Let's start over there." Arpad is pointing to a large male figure about twenty feet distant. From this distance, he could be napping, though there is something in the lay of the arms and the stillness of him that suggests something more permanent. We walk toward the man. Ron stays near the gate, feigning interest in the construction details of a toolshed.

Like many big-bellied people in Tennessee, the dead man is dressed for comfort. He wears gray sweatpants and a single-pocket white T-shirt.

Arpad explains that one of the graduate students is studying the effects of clothing on the decay process. Normally, they are naked.

The cadaver in the sweatpants is the newest arrival. He will be our poster man for the first stage of human decay, the "fresh" stage. ("Fresh," as in fresh fish, not fresh air. As in recently dead but not necessarily something you want to put your nose right up to.) The hallmark of fresh-stage decay is a process called autolysis, or self-digestion. Human cells use enzymes to cleave molecules, breaking compounds down into things they can use.

While a person is alive, the cells keep these enzymes in check, preventing them from breaking down the cells' own walls. After death, the enzymes operate unchecked and begin eating through the cell structure, allowing the liquid inside to leak out.

"See the skin on his fingertips there?" says Arpad. Two of the dead man's fingers are sheathed with what look like rubber fingertips of the sort worn by accountants and clerks. "The liquid from the cells gets between the layers of skin and loosens them. As that progresses, you see skin sloughage." Mortuary types have a different name for this. They call it

"skin slip." Sometimes the skin of the entire hand will come off. Mortuary types don't have a name for this, but forensics types do. It's called

"gloving."

"As the process progresses, you see giant sheets of skin peeling off the body," says Arpad. He pulls up the hem of the man's shirt to see if, indeed, giant sheets are peeling. They are not, and that's okay.

Something else is going on. Squirming grains of rice are crowded into the man's belly button. It's a rice grain mosh pit. But rice grains do not move.

These cannot be grains of rice. They are not. They are young flies.

Entomologists have a name for young flies, but it is an ugly name, an insult. Let's not use the word "maggot." Let's use a pretty word. Let's use

"hacienda."

Arpad explains that the flies lay their eggs on the body's points of entry: the eyes, the mouth, open wounds, genitalia. Unlike older, larger haciendas, the little ones can't eat through skin. I make the mistake of asking Arpad what the little haciendas are after.

Arpad walks around to the corpse's left foot. It is bluish and the skin is transparent. "See the [haciendas] under the skin? They're eating the subcutaneous fat. They love fat." I see them. They are spaced out, moving slowly. It's kind of beautiful, this man's skin with these tiny white slivers embedded just beneath its surface. It looks like expensive Japanese rice paper. You tell yourself these things.

Let us return to the decay scenario. The liquid that is leaking from the enzyme-ravaged cells is now making its way through the body. Soon enough it makes contact with the body's bacteria colonies: the ground troops of putrefaction. These bacteria were there in the living body as well, in the intestinal tract, in the lungs, on the skin—the places that came in contact with the outside world. Life is looking rosy for our one-celled friends. They've already been enjoying the benefits of a decommissioned human immune system, and now, suddenly, they're awash with this edible goo, issuing from the ruptured cells of the intestine lining. It's raining food. As will happen in times of plenty, the population swells.

Some of the bacteria migrate to the far frontiers of the body, traveling by sea, afloat in the same liquid that keeps them nourished. Soon bacteria are everywhere. The scene is set for stage two: bloat.

The life of a bacterium is built around food. Bacteria don't have mouths or fingers or Wolf Ranges, but they eat. They digest. They excrete. Like us, they break their food down into its more elemental components. The enzymes in our stomachs break meat down into proteins. The bacteria in our gut break those proteins down into amino acids; they take up where we leave off. When we die, they stop feeding on what we've eaten and begin feeding on us. And, just as they do when we're alive, they produce gas in the process. Intestinal gas is a waste product of bacteria metabolism.

The difference is that when we're alive, we expel that gas. The dead, lacking workable stomach muscles and sphincters and bedmates to annoy, do not. Cannot. So the gas builds up and the belly bloats. I ask Arpad why the gas wouldn't just get forced out eventually. He explains that the small intestine has pretty much collapsed and sealed itself off. Or that there might be "something" blocking its egress. Though he allows, with some prodding, that a little bad air often does, in fact, slip out, and so, as a matter of record, it can be said that dead people fart. It needn't be, but it can.

Other books

Sign Of The Cross by Kuzneski, Chris
Love to Hate You by Anna Premoli
The Alley by Eleanor Estes
McNally's Risk by Lawrence Sanders
MORTAL COILS by Unknown
The Drowned by Graham Masterton


readsbookonline.com Copyright 2016 - 2024