Read Secondary Schizophrenia Online
Authors: Perminder S. Sachdev
schizophrenia? Science, 1998.
receptor antagonists ketamine and
behavior of rats. Behav
281
(5381):1264–5.
PCP have direct effects on the
Pharmacol, 1995.
6
(1):55–65.
215. Moghaddam B., Adams B., Verma
dopamine D-2 and serotonin
207. Rung J. P., Carlsson A.,
A.,
et al.
Activation of
5-HT2 receptors – implications
Markinhuhta K. R.,
et al.
glutamatergic neurotransmission
for models of schizophrenia. Mol
(
+
)-MK-801 induced social
by ketamine: a novel step in the
Psychiatry, 2002.
7
(8):837–44.
withdrawal in rats: a model for
pathway from NMDA receptor
198. Svenningsson P., Nomikos G. G.,
negative symptoms of
blockade to dopaminergic and
Greengard P. Response to
schizophrenia. Prog
cognitive disruptions associated
comment on “Diverse
Neuropsychopharmacol Biol
with the prefrontal cortex.
psychotomimetics act through a
Psychiatry, 2005.
29
(5):827–32.
J Neurosci, 1997.
17
(8):2921–7.
common signaling pathway.”
208. Duncan G. E., Miyamoto S.,
216. Adams B., Moghaddam B.
Science, 2004;
305
(5681):180.
Leipzig J. N.,
et al.
Comparison of
Corticolimbic dopamine
199. Jordan S., Chen R., Fernalld R., et
brain metabolic activity patterns
neurotransmission is temporally
al. In vitro biochemical evidence
induced by ketamine, MK-801
dissociated from the cognitive and
that the psychotomimetics
and amphetamine in rats: support
locomotor effects of
phencyclidine, ketamine and
for NMDA receptor involvement
phencyclidine. J Neurosci, 1998.
dizocilpine (MK-801) are inactive
in responses to subanesthetic dose
18
(14):5545–54.
Organic Syndromes of Schizophrenia – Section 3
217. Liu J., Moghaddam B. Regulation
225. Krystal J. H., AbiDargham A.,
232. Keilhoff G., Becker A., Grecksch
of glutamate efflux by excitatory
Laruelle M.,
et al.
(2004).
G.,
et al.
Repeated application of
amino-acid receptors – evidence
Pharmacological models of
ketamine to rats induces changes
for tonic inhibitory and phasic
psychoses. In Neurobiology of
in the hippocampal expression of
excitatory regulation. J Pharmacol
Mental Illness. Charney D. S. and
parvalbumin, neuronal nitric
Exp Thera, 1995.
274
(3):1209–15.
Nestler E. J. (Eds.). New York:
oxide synthase and cFOS similar
218. Homayoun L., Jackson M. E.,
Oxford University Press,
to those found in human
Moghaddam B. Activation of
pp. 287–98.
schizophrenia. Neuroscience,
metabotropic glutamate 2/3
226. Gulyas A. I., Megias M., Emri Z.,
2004.
126
(3):591–8.
receptors reverses the effects of
et al.
Total number and ratio of
233. Morrow B. A., Elsworth J. D.,
NMDA receptor hypofunction on
excitatory and inhibitory synapses
Roth R. H. Repeated
prefrontal cortex unit activity in
converging onto single
phencyclidine in monkeys results
awake rats. J Neurophysiol, 2005.
interneurons of different types in
in loss of parvalbumin-containing
93
(4):1989–2001.
the CA1 area of the rat
axo-axonic projections in the
219. Homayoun H., Moghaddam B.
hippocampus. J Neurosci, 1999.
prefrontal cortex.
Fine-tuning of awake prefrontal
19
:10082–97.
Psychopharmacology, 2007.
cortex neurons by clozapine:
227. Jones R. S. G., Buhl E. H.
192
(2):283–90.
comparison with haloperidol and
Basket-like interneurons in layer
234. Kinney J. W., Davis C. N.,
N-desmethylclozapine. Biol
II of the entorhinal cortex exhibit
Tabarean I.,
et al.
A specific role
Psychiatry, 2007.
61
(5):679–87.
a powerful NMDA-mediated
for NR2A-containing NMDA
synaptic excitation. Neurosci Lett,
220. Homayoun H., Moghaddam B.
receptors in the maintenance of
1993.
149
(1):35–9.
NMDA receptor hypofunction
parvalbumin and GAD67
produces opposite effects on
228. Goldberg J. H., Yuste R., Tamas G.
immunoreactivity in cultured
prefrontal cortex interneurons
Ca2
+
imaging of mouse
interneurons. J Neurosci, 2006.
and pyramidal neurons.
neocortical interneurone
26
(5):1604–15.
J Neurosci, 2007.
27
(43):
dendrites: contribution of
235. Bartos M., Vida I., Jonas P.
11496–500.
Ca2
+
-permeable AMPA and
Synaptic mechanisms of
NMDA receptors to subthreshold
221. Suzuki Y., Jodo E., Takeuchi S., et
synchronized gamma oscillations
Ca2
+
dynamics. J Physiol, 2003.
al. Acute administration of
in inhibitory interneuron
551
(1):67–78.
phencyclidine induces tonic
networks. Nat Rev Neurosci, 2007.
229. Cochran S. M., Fujimura M.,
activation of medial prefrontal
8
(1):45–56.
Morris B. J.,
et al.
Acute and
cortex neurons in freely moving
236. Cunningham M. O., Hunt J.,
delayed effects of phencyclidine
rats. Neuroscience, 2002.
Middleton S.,
et al.
upon mRNA levels of markers of
114
(3):769–79.
Region-specific reduction in
glutamatergic and GABAergic
222. Jodo E., Suzuki Y., Katayama T., et
entorhinal gamma oscillations
neurotransmitter function in the
al. Activation of medial prefrontal
and parvalbumin-
rat brain. Synapse, 2002.
cortex by phencyclidine is
immunoreactive neurons in
46
(3):206–14.
mediated via a hippocampo-
animal models of psychiatric
230. Rujescu D., Bender A., Keck M., et
prefrontal pathway. Cereb Cortex,
illness. J Neurosci, 2006.
al. A pharmacological model for
2005.
15
(5):663–9.
26
(10):2767–76.
psychosis based on
223. Katayama T., Jodo E., Suzuki Y., et
237. Lewis D. A., Gonzalez-Burgos G.
N-methyl-D-aspartate receptor
al. Activation of medial prefrontal
Pathophysiologically based
hypofunction: Molecular, cellular,
cortex neurons by phencyclidine
treatment interventions in
functional and behavioral
is mediated via AMPA/kainate
schizophrenia. Nat Med, 2006.
abnormalities. Biol Psychiatry,
glutamate receptors in
12
(9):1016–22.
2006.
59
(8):721–9.
anesthetized rats. Neuroscience,
238. Lewis D. A., Hashimoto T.
231. Abdul-Monim Z., Neill J. C.,
2007.
150
(2):442–8.
Deciphering the disease process of
Reynolds G. P. Subchronic
224. Sharp F. R., Tomitaka M.,
schizophrenia: the contribution of
psychotomimetic phencyclidine
Bernaudin M.,
et al.
Psychosis:
cortical GABA neurons. Int Rev
induces deficits in reversal
pathological activation of limbic
Neurobiol, 2007.
78
:109–31.
learning and alterations in
thalamocortical circuits by
parvalbumin-immuno-
239. Lewis D. A., Hashimoto T., Volk
psychomimetics and
reactive expression in the rat.
D. W. Cortical inhibitory neurons
schizophrenia? Trends Neurosc,
J Psychopharmacol, 2007.
and schizophrenia. Nat Rev
166
2001.
24
(6):330–4.
21
(2):198–205.
Neurosci, 2005.
6
(4):312–24.
Chapter 10 – Psychotomimetic effects of PCP, LSD, and Ecstasy
240. Lewis D. A., Gonzalez-Burgos G.
cognitive deficits and cortical
lamotrigine added to
Neuroplasticity of neocortical
dopamine dysfunction in
conventional and atypical
circuits in schizophrenia.
monkeys after long-term
antipsychotics in schizophrenia.
Neuropsychopharmacology, 2008.
administration of phencyclidine.
Biol Psychiatr, 2004.
56
(6):441–6.
33
:141–65.
Science, 1997.
277
(5328):953–5.
259. Dursun S. M., Deakin J. F.W.
241. Reynolds G. P., Harte M. K. The
250. Kristiansen L. V., Huerta I.,
Augmenting antipsychotic
neuronal pathology of
Beneyto M.,
et al.
NMDA
treatment with lamotrigine or
schizophrenia: molecules and
receptors and schizophrenia. Curr
topiramate in patients with
mechanisms. Biochem Soc Trans,
Opin Pharmacol, 2007.
treatment-resistant schizophrenia:
2007.
35
:433–6.
7
(1):48–55.
a naturalistic case series outcome
242. Basar-Eroglu C., Brand A.,
251. Javitt D. C. Glutamate and
study. J Psychopharmacol, 2001.
Hildebrandt H.,
et al.
Working
schizophrenia: phencyclidine,
15
(4):297–301.
memory related gamma
N-methyl-D-aspartate receptors,
260. Dursun S. M., McIntosh D.
oscillations in schizophrenia
and dopamine-glutamate
Clozapine plus lamotrigine in
patients. Intl J Psychophysiol, 2007.
interactions. Int Rev Neurobiol,
treatment-resistant schizophrenia.
64
(1):39–45.
2007.
78
:69.
Arch Gen Psychiatry, 1999.
56
(10):950.
243. Symond M. B., Harris A. W. F.,
252. Catts S. V., Ward P. B., Lloyd A., et
Gordon E.,
et al.
“Gamma
al. Molecular biological
261. Zoccali R., Muscatello M. R.,
synchrony” in first-episode
investigations into the role of the
Bruno A.,
et al.
The effect of
schizophrenia: a disorder of
NMDA receptor in the
lamotrigine augmentation of
temporal connectivity? Am J
pathophysiology of
clozapine in a sample of
Psychiatry, 2005.
162
(3):459–65.
schizophrenia. Aust NZ J
treatment-resistant schizophrenic
Psychiatry, 1997.
31
(1):17–26.
patients: a double-blind,
244. Light G. A., Hsu J. L., Hsieh M.
placebo-controlled study.
H.,
et al.
Gamma band
253. Carlsson A. The current status of
Schizophr Res, 2007.
oscillations reveal neural network
the dopamine hypothesis of
93
(1–3):109–16.
cortical coherence dysfunction in
schizophrenia. Neuropsychophar-
schizophrenia patients. Biol
macology, 1988.
1
(3):179–86.
262. Tiihonen J., Hallikainen T.,
Psychiatry, 2006.
60
(11):1231–40.
254. Carlsson M., Carlsson A.
Ryynanen O. P.,
et al.
Lamotrigine
245. Spencer K. M. Abnormal neural
Schizophrenia – a subcortical
in treatment-resistant
synchrony in schizophrenia.