Read Secondary Schizophrenia Online
Authors: Perminder S. Sachdev
E. F., Mohan K. Difference
85–90.
American Psychiatric Press, Inc.,
between herpes simplex virus type
7. O’Callaghan E., Sham P. C., Takei
pp. 89–112.
1 and type 2 neonatal encephalitis
N.,
et al.
The relationship of
16. Remington J. S., McLeod R.,
in neurological outcome. Lancet,
schizophrenic births to 16
Thulliez P., Desmonts G. (2001).
1988.
1
(8575–6):1–4.
infectious diseases. Br J
Toxoplasmosis. In Infectious
24. Ingall D., Sanchez P. J. (1995).
Psychiatry, 1994.
165
(3):353–6.
Diseases of the Fetus and Newborn
Syphilis. In Infectious Diseases of
8. Torrey E. F., Rawlings R.,
Infant, Remington J. S. and Klein
the Fetus and Newborn,
Waldman I. N. Schizophrenic
J. O. (Eds.). Philadelphia: W.B.
Remington J. S. and Klein J. O.
births and viral diseases in two
Saunders Company, pp. 205–
(Eds.). Philadelphia: WB
states. Schizophr Res, 1988.
346.
Saunders. p. 652.
1
(1):73–7.
17. Dukes C. S., Luft B. J., Durak D. T.
25. Babulas V., Factor-Litvak P., Goetz
9. Suvisaari J., Haukka J., Tanskanen
(1997). Toxoplasmosis. In
R., Schaefer C. A., Brown A. S.
A., Hovi T., Lönnqvist J.,
Infections of the Central Nervous
Prenatal exposure to maternal
Association between prenatal
System, Scheld W. M., Whitley
genital and reproductive
exposure to poliovirus infection
R. J., and Durack D. T. (Eds).
infections and adult
and adult schizophrenia. Am J
Philadelphia: Lippincott-Raven,
schizophrenia. Am J Psychiatry,
Psychiatry, 1999.
156
(7):1100–2.
pp. 785–806.
2006.
163
(5):927–9.
10. Van Den Berg B. J. The California
18. Brown A. S., Schaefer C. A.,
26. Brown A. S., Cohen P., Greenwald
child health and development
Quesenberry C. P. Jr.,
et al.
S., Susser E. Nonaffective
studies: twenty years of research.
Maternal exposure to
psychosis after prenatal exposure
World Health Stat Q, 1979.
toxoplasmosis and risk of
to rubella. Am J Psychiatry, 2000.
32
(4):269–86.
schizophrenia in adult offspring.
157
(3):438–43.
285
Organic Syndromes of Schizophrenia – Section 3
27. Brown A. S., Cohen P.,
Publ Assoc Res Nerv Ment Dis,
46. Zalewska A., Glowacka E.,
Harkavy-Friedman J.,
et al.
A.E.
1973.
51
:23–62.
Wyczolkowska J.,
et al.
Interleukin
Bennett Research Award. Prenatal
37. Townsend J. J. (1994). Rubella
6 and 8 levels in plasma and
rubella, premorbid abnormalities,
virus disease. In Handbook of
fibroblast cultures in psoriasis.
and adult schizophrenia. Biol
Neurovirology, McKendall R. R.
Mediators Inflamm, 2006.
2006
:
Psychiatry, 2001.
49
(6):
and Stropp W. G. (Eds.). New
81767.
473–86.
York: Marcel Dekker, pp. 603–11.
47. Brown A. S., Susser E. (1999).
28. Chess S., Korn S., Fernandez P.
38. Weizman R., Bessler H. (1999).
Plausibility of prenatal rubella,
(1971). Psychiatric Disorders of
Cytokines: Stress and Immunity.
influenza, and other viral
Children with Congenital Rubella.
In Cytokines: Stress and Immunity,
infections as risk factors for
New York: Brunner/Mazel.
Plotnikoff N. P., Faith R. E., and
schizophrenia. In Prenatal
29. Chess S. Follow-up report on
Murgo A. J.,
et al.
(Eds.). Boca
Exposures in Schizophrenia, Susser
autism in congenital rubella.
Raton, FL: CRC Press,
E., Brown A. S., and Gorman
J Autism Child Schizophr, 1977.
pp. 1–15.
J. M. (Eds.). Washington, DC:
7
(1):69–81.
American Psychiatric Press, Inc.,
39. Shimoya K., Matsuzaki, N.,
pp. 113–31.
30. Eaton W. W. Epidemiology of
Taniguchi T.,
et al.
Interleukin-8
schizophrenia. Epidemiol Rev,
level in maternal serum as a
48. Koenig J. I., Kirkpatrick B., Lee P.
1985.
7
:105–26.
marker for screening of
Glucocorticoid hormones and
early brain development in
31. Kendler K. S., MacLean C. J.,
histological chorioamnionitis at
schizophrenia. Neuropsycho-
O’Neill F. A.,
et al.
Evidence for a
term. Int J Gynaecol Obstet, 1997.
pharmacology, 2002.
27
(2):
schizophrenia vulnerability locus
57
(2):153–9.
309–18.
on chromosome 8p in the Irish
40. Gilmore J. H., Jarskog L. F.
Study of High-Density
Exposure to infection and brain
49. Torrey E. F., Bartko J. J., Lun Z. R.,
Schizophrenia Families. Am J
development: Cytokines in the
Yolken R. H. Antibodies to
Psychiatry, 1996.
153
(12):
pathogenesis of schizophrenia.
toxoplasma gondii in patients
1534–40.
Schizophr Res, 1997.
24
(3):365–7.
with schizophrenia: a
32. Reichenberg A., Weiser M., Rapp
41. Brown A. S., Hooton J., Schaefer
meta-analysis. Schizophr Bull,
M. A.,
et al.
Elaboration on
C. A.,
et al.
Elevated maternal
2007.
33
(3):729–36.
premorbid intellectual
interleukin-8 levels and risk of
50. Anton E. S., Marchionni M. A.,
performance in schizophrenia:
schizophrenia in adult offspring.
Lee K. F.,
et al.
Role of
premorbid intellectual decline
Am J Psychiatry, 2004.
161
(5):
GGF/neuregulin signaling in
and risk for schizophrenia. Arch
889–95.
interactions between migrating
Gen Psychiatry, 2005.
62
(12):
42. Atta-ur-Rahman, Harvey K.,
neurons and radial glia in the
1297–304.
Siddiqui R. A. Interleukin-8: an
developing cerebral cortex.
33. Whitley R. J., Stagno S. (1997).
autocrine inflammatory mediator.
Development, 1997.
124
(18):
Perinatal infections. In Infections
Curr Pharm Des, 1999.
5
(4):
3501–10.
of the Central Nervous System,
241–53.
51. Kamiya A., Kubo K., Tomoda T.,
Scheld W. M., Whitley R. J., and
43. Mukaida N. The roles of cytokine
et al.
A schizophrenia-associated
Durack D. T. (Eds.). Philadelphia:
receptors in diseases. Rinsho
mutation of DISC1 perturbs
Lippincott-Raven Press,
Byori, 2000.
48
(5):409–15.
cerebral cortex development. Nat
pp. 223–53.
Cell Biol, 2005.
7
(12):1167–78.
44. Detmers P. A., La S. K.,
34. Boue J. G., Boue A. Effects of
Olsen-Egbert E.,
et al.
52. Shi L., Fatemi S. H., Sidwell R. W.,
rubella virus infection on the
Neutrophil-activating protein
Patterson P. H. Maternal influenza
division of human cells. Am J Dis
1/interleukin 8 stimulates the
infection causes marked
Child, 1969.
118
(1):45–8.
binding activity of the leukocyte
behavioral and pharmacological
35. Rorke L. B. Nervous system
adhesion receptor CD11b/CD18
changes in the offspring.
lesions in the congenital rubella
on human neutrophils. J Exp Med,
J Neurosci, 2003.
23
(1):297–302.
syndrome. Arch Otolaryngol,
1990.
171
(4):1155–62.
53. Fatemi S. H., Emamian E. S., Kist
1973.
98
(4):249–51.
45. Huber A. R., Kunkel S. L., Todd
D.,
et al.
Defective corticogenesis
36. Kemper T. L., Lecours A. R., Gates
R. F., 3rd, Weiss S. J. Regulation of
and reduction in reelin
M. J., Yakoviev P. I. Retardation of
transendothelial neutrophil
immunoreactivity in cortex and
the myelo-and cytoarchitectonic
migration by endogenous
hippocampus of prenatally
maturation of the brain in the
interleukin-8. Science, 1991.
infected neonatal mice. Mol
286
congenital rubella syndrome. Res
254
(5028):99–102.
Psychiatry, 1999.
4
(2):145–54.
Chapter 22 – Infection and schizophrenia
54. Zuckerman L., Rehavi M.,
mental model of schizophrenia.
Mortal Wkly Rep,
49
(RR-2):
Nachman R., Weiner I. Immune
Neuropsychopharmacology,
57–75. 2000.
activation during pregnancy in
2003.
28
(10):1778–
56. Brown A. S., Schaefer C. A., Wyatt
rats leads to a postpubertal
89.
R. J.,
et al.
Maternal exposure to
emergence of disrupted latent
55. Centers for Disease Control and
respiratory infections and adult
inhibition, dopaminergic
Prevention. CDC
schizophrenia spectrum
hyperfunction, and altered
recommendations regarding
disorders: a prospective birth
limbic morphology in the
selected conditions affecting
cohort study. Schizophr Bull,
offspring: a novel neurodevelop-
women’s health. MMWR Morb
2000.
26
(2):287–95.
287
Section 3
Organic syndromes of schizophrenia: genetic disorders related to SLP
of schizophrenia
Bryan Mowry
Facts box
SZ
[2],
and in 1946, Kallmann analyzed 691 SZ twin
r
families
[3].
Decades of family
[4],
twin
[5, 6],
and
Schizophrenia (SZ) has a substantial genetic
adoption studies
[7, 8]
have substantiated these early
predisposition.
views indicating a substantial genetic component to
r
The inheritance pattern is complex, likely
SZ risk, with an 80% heritability (the proportion of
involving multiple, commonly occurring risk
the total phenotypic variance explained by genetic fac-variants, each exerting a modest effect on
tors)
[9, 10],
a 50% concordance rate in monozygotic
overall disease risk.
twins, and a 10% risk to siblings relative to a 1% gen-r
Significant progress has recently occurred
eral population risk
[11]
. The inheritance pattern is
with consensus chromosomal regions being
complex (i.e. non-Mendelian), and there are no known
linked to SZ and specific candidate genes,
familial subtypes
[12].
Available data suggest multiple,
often located within these linkage regions,
common SZ variants, each exerting small to moderate
being associated with SZ in multiple
effect on overall disease risk
[12],
possibly interacting
populations with variable ancestry.
with environmental factors
[13]
and epigenetic pro-r
However, indisputable evidence of
cesses
[14]
in a neurodevelopmental context to confer
association is lacking and no allele/haplotype
vulnerability
[15].
An alternative view is that multiple
has yet been conclusively implicated for any
genes are certainly implicated, but that each is highly
candidate gene.