Authors: Robert Greene
Tags: #Motivational & Inspirational, #Success, #Personal Growth, #Azizex666, #Self-Help
These early humans evolved the ability to detach and think as their primary advantage in the struggle to avoid predators and find food. It connected them to a reality other animals could not access. Thinking on this level was the single greatest turning point in all of evolution—the emergence of the conscious, reasoning mind.
The second biological advantage is subtler, but equally powerful in its implications. All primates are essentially social creatures, but because of their intense vulnerability in open areas, our earliest ancestors had a much greater need for group cohesion. They depended on the group for vigilant observation of predators and the gathering of food. In general, these early hominids had many more social interactions than other primates. Over the course of hundreds of thousands of years, this social intelligence became increasingly sophisticated, allowing these ancestors to cooperate with one another on a high level. And as with our understanding of the natural environment, this intelligence depended on deep attention and focus. Misreading the social signs in a tight-knit group could prove highly dangerous.
Through the elaboration of these two traits—the
visual
and the
social
—our primitive ancestors were able to invent and develop the complex skill of hunting some two to three million years ago. Slowly, they became more creative, refining this complex skill into an art. They became seasonal hunters and spread throughout the Euro-Asian landmass, managing to adapt themselves to all kinds of climates. And in the process of this rapid evolution, their brains grew to virtually modern human size, some 200,000 years ago.
In the 1990s a group of Italian neuroscientists discovered something that could help explain this increasing hunting prowess of our primitive ancestors, and in turn something about mastery as it exists today. In studying the brains of monkeys, they found that particular motor-command neurons will not only fire when they execute a very specific action—such as pulling a lever to get a peanut or taking hold of a banana—but that these neurons will also fire when monkeys observe another performing the same actions. These were soon dubbed
mirror neurons
. This neuronal firing meant that these primates would experience a similar sensation in both doing and observing the same deed, allowing them to put themselves in the place of another and perceive its movements as if they were doing them. It would
account for the ability of many primates to imitate others, and for the pronounced abilities of chimpanzees to anticipate the plans and actions of a rival. Such neurons, it is speculated, evolved because of the social nature of primate life.
Recent experiments have demonstrated the existence of such neurons in humans, but on a much higher level of sophistication. A monkey or primate can see an action from the point of view of the performer and imagine its intentions, but we can take this further. Without any visual cues or any action on the part of others, we can place ourselves
inside their minds
and imagine what they might be thinking.
For our ancestors, the elaboration of mirror neurons would allow them to read each other’s desires from the subtlest of signs and thus elevate their social skills. It would also serve as a critical component in toolmaking—one could learn to fashion a tool by imitating the actions of an expert. But perhaps most important of all, it would give them the ability to
think inside
everything around them. After years of studying particular animals, they could identify with and think like them, anticipating behavioral patterns and heightening their ability to track and kill prey. This
thinking inside
could be applied to the inorganic as well. In fashioning a stone tool, expert toolmakers would feel as one with their instruments. The stone or wood they cut with became an extension of their hand. They could feel it as if it were their own flesh, permitting much greater control of the tools themselves, both in making and in using them.
This power of the mind could be unleashed only after years of experience. Having mastered a particular skill—tracking prey, fashioning a tool—it was now automatic, and so while practicing the skill the mind no longer had to focus on the specific actions involved but instead could concentrate on something higher—what the prey might be thinking, how the tool could be felt as part of the hand. This
thinking inside
would be a preverbal version of third-level intelligence—the primitive equivalent of Leonardo da Vinci’s intuitive feel for anatomy and landscape or Michael Faraday’s for electromagnetism. Mastery at this level meant our ancestors could make decisions rapidly and effectively, having gained a complete understanding of their environment and their prey. If this power had not evolved, the minds of our ancestors would have become easily overwhelmed by the mass of information they had to process for a successful hunt. They had developed this intuitive power hundreds of thousands of years before the invention of language, and that is why when we experience this intelligence it seems like something preverbal, a power that transcends our ability to put it into words.
Understand: This long stretch of time played a critical, elemental role in our mental development. It fundamentally altered our relationship to
time. For animals, time is their great enemy. If they are potential prey, wandering too long in a space can spell instant death. If they are predators, waiting too long will only mean the escape of their prey. Time for them also represents physical decay. To a remarkable extent, our hunting ancestors reversed this process. The longer they spent observing something, the deeper their understanding and connection to reality. With experience, their hunting skills would progress. With continued practice, their ability to make effective tools would improve. The body could decay but the mind would continue to learn and adapt. Using time for such effect is the essential ingredient of mastery.
In fact, we can say that this revolutionary relationship to time fundamentally altered the human mind itself and gave it a particular quality or
grain
. When we take our time and focus in depth, when we trust that going through a process of months or years will bring us mastery, we work with the grain of this marvelous instrument that developed over so many millions of years. We infallibly move to higher and higher levels of intelligence. We see more deeply and realistically. We practice and make things with skill. We learn to think for ourselves. We become capable of handling complex situations without being overwhelmed. In following this path we become
Homo magister
, man or woman the Master.
To the extent that we believe we can skip steps, avoid the process, magically gain power through political connections or easy formulas, or depend on our natural talents, we move against this grain and reverse our natural powers. We become
slaves
to time—as it passes, we grow weaker, less capable, trapped in some dead-end career. We become captive to the opinions and fears of others. Rather than the mind connecting us to reality, we become disconnected and locked in a narrow chamber of thought. The human that depended on focused attention for its survival now becomes the distracted scanning animal, unable to think in depth, yet unable to depend on instincts.
It is the height of stupidity to believe that in the course of your short life, your few decades of consciousness, you can somehow rewire the configurations of your brain through technology and wishful thinking, overcoming the effect of six million years of development. To go against the grain might bring temporary distraction, but time will mercilessly expose your weakness and impatience.
The great salvation for all of us is that we have inherited an instrument that is remarkably plastic. Our hunter-gatherer ancestors, over the course of time, managed to craft the brain into its present shape by creating a culture that could learn, change, and adapt to circumstances, that wasn’t a prisoner to the incredibly slow march of natural evolution. As modern
individuals, our brains have the same power, the same plasticity. At any moment we can choose to shift our relationship to time and work with the grain, knowing of its existence and power. With the element of time working for us, we can reverse the bad habits and passivity, and move up the ladder of intelligence.
Think of this shift as a return to your radical, deep past as a human, connecting to and maintaining a magnificent continuity with your hunter-gatherer ancestors in a modern form. The environment we operate in may be different, but the brain is essentially the same, and its power to learn, adapt, and master time is universal.
KEYS TO MASTERY
A man should learn to detect and watch that gleam of light which flashes across his mind from within, more than the luster of the firmament of bards and sages. Yet he dismisses without notice his thought, because it is his. In every work of genius we recognize our own rejected thoughts; they come back to us with a certain alienated majesty.
—R
ALPH
W
ALDO
E
MERSON
If all of us are born with an essentially similar brain, with more or less the same configuration and potential for mastery, why is it then that in history only a limited number of people seem to truly excel and realize this potential power? Certainly, in a practical sense, this is the most important question for us to answer.
The common explanations for a Mozart or a Leonardo da Vinci revolve around natural talent and brilliance. How else to account for their uncanny achievements except in terms of something they were born with? But thousands upon thousands of children display exceptional skill and talent in some field, yet relatively few of them ever amount to anything, whereas those who are less brilliant in their youth can often attain much more. Natural talent or a high IQ cannot explain future achievement.
As a classic example, compare the lives of Sir Francis Galton and his older cousin, Charles Darwin. By all accounts, Galton was a super-genius with an exceptionally high IQ, quite a bit higher than Darwin’s (these are estimates done by experts years after the invention of the measurement). Galton was a boy wonder who went on to have an illustrious scientific career, but he never quite mastered any of the fields he went into. He was notoriously restless, as is often the case with child prodigies.
Darwin, by contrast, is rightly celebrated as the superior scientist, one
of the few who has forever changed our view of life. As Darwin himself admitted, he was “a very ordinary boy, rather below the common standard in intellect…. I have no great quickness of apprehension…. My power to follow a long and purely abstract train of thought is very limited.” Darwin, however, must have possessed something that Galton lacked.
In many ways, a look at the early life of Darwin himself can supply an answer to this mystery. As a child Darwin had one overriding passion—collecting biological specimens. His father, a doctor, wanted him to follow in his footsteps and study medicine, enrolling him at the University of Edinburgh. Darwin did not take to this subject and was a mediocre student. His father, despairing that his son would ever amount to anything, chose for him a career in the church. As Darwin was preparing for this, a former professor of his told him that the HMS
Beagle
was to leave port soon to sail around the world, and that it needed a ship’s biologist to accompany the crew in order to collect specimens that could be sent back to England. Despite his father’s protests, Darwin took the job. Something in him was drawn to the voyage.
Suddenly, his passion for collecting found its perfect outlet. In South America he could collect the most astounding array of specimens, as well as fossils and bones. He could connect his interest in the variety of life on the planet with something larger—major questions about the origins of species. He poured all of his energy into this enterprise, accumulating so many specimens that a theory began to take shape in his mind. After five years at sea, he returned to England and devoted the rest of his life to the single task of elaborating his theory of evolution. In the process he had to deal with a tremendous amount of drudgery—for instance, eight years exclusively studying barnacles to establish his credentials as a biologist. He had to develop highly refined political and social skills to handle all the prejudice against such a theory in Victorian England. And what sustained him throughout this lengthy process was his intense love of and connection to the subject.
The basic elements of this story are repeated in the lives of all of the great Masters in history: a youthful passion or predilection, a chance encounter that allows them to discover how to apply it, an apprenticeship in which they come alive with energy and focus. They excel by their ability to practice harder and move faster through the process, all of this stemming from the intensity of their desire to learn and from the deep connection they feel to their field of study. And at the core of this intensity of effort is in fact a quality that is genetic and inborn—not talent or brilliance, which is something that must be developed, but rather a deep and powerful
inclination
toward a particular subject.
This inclination is a reflection of a person’s uniqueness. This uniqueness is not something merely poetic or philosophical—it is a scientific fact
that genetically, every one of us is unique; our exact genetic makeup has never happened before and will never be repeated. This uniqueness is revealed to us through the preferences we innately feel for particular activities or subjects of study. Such inclinations can be toward music or mathematics, certain sports or games, solving puzzle-like problems, tinkering and building, or playing with words.
With those who stand out by their later mastery, they experience this inclination more deeply and clearly than others. They experience it as an inner calling. It tends to dominate their thoughts and dreams. They find their way, by accident or sheer effort, to a career path in which this inclination can flourish. This intense connection and desire allows them to withstand the pain of the process—the self-doubts, the tedious hours of practice and study, the inevitable setbacks, the endless barbs from the envious. They develop a resiliency and confidence that others lack.