Read El origen de las especies Online

Authors: Charles Darwin

El origen de las especies (42 page)

BOOK: El origen de las especies
12.59Mb size Format: txt, pdf, ePub
ads

Considerando lo flexible que es la cera delgada, no veo que exista dificultad alguna en que las abejas, cuando trabajan en los dos lados de una tira de cera, noten cuándo han mordido la cera, hasta dejarla de la delgadez adecuada, y paren entonces su labor. En los panales ordinarios me ha parecido que las abejas no siempre consiguen trabajar exactamente con la misma velocidad por los dos lados, pues he observado en la base de una celdilla recién empezada rombos medio completos, que eran, ligeramente cóncavos por uno de los lados, donde supongo que las abejas habían excavado con demasiada rapidez, y convexos por el lado opuesto, donde las abejas habían trabajado menos rápidamente. En un caso bien notorio volví a colocar el panal en la colmena, y permití a las abejas ir a trabajar durante un corto tiempo, y, examinando la celdilla, encontré que la laminilla rómbica había sido completada y quedado perfectamente plana; era absolutamente imposible, por la extrema delgadez de la plaquita. que las abejas pudiesen haber efectuado esto mordisqueando el lado convexo, y sospecho que, en estos casos, las abejas están en lados opuestos y empujan y vencen la cera, dúctil y caliente -lo cual, como he comprobado, es fácil de hacer, hasta colocarla en su verdadero plano intermedio, y de este modo la igualan.

Por el experimento de la lámina de cera con bermellón podemos ver que, si las abejas pudiesen construir por sí mismas una pared delgada de cera, podrían hacer sus celdas de la forma debida, colocándose a la distancia conveniente unas de otras, excavando con igual velocidad y esforzándose en hacer cavidades esféricas iguales, pero sin permitir nunca que las esferas llegasen unas a otras, produciéndose agujeros. Ahora bien; las abejas, como puede verse claramente examinando el borde de un panal en construcción, hacen una tosca pared o reborde circular todo alrededor del panal, y lo muerden por los dos lados, trabajando siempre circularmente al ahondar cada celdilla. No hacen de una vez toda la base piramidal de tres lados de cada celdilla, sino solamente la laminilla o las dos laminillas rómbicas que están en el borde de crecimiento del panal, y nunca completan los bordes superiores de las placas rómbicas hasta que han empezado las paredes hexagonales. Algunas de estas observaciones difieren de las hechas por Francisco Huber, tan justamente celebrado; pero estoy convencido de su exactitud, y si tuviese espacio demostraría que son compatibles con mi teoría.

La observación de Huber de que la primera de todas las celdillas es excavada en una pequeña pared de cera de lados paralelos, no es, según lo que he visto, rigurosamente exacta, pues el primer comienzo ha sido siempre una pequeña caperuza de cera; pero no entraré ahora en detalles. Vemos el importantísimo papel que representa el excavar en la construcción de las celdillas; pero sería un error suponer que las abejas no pueden construir una tosca pared de cera en la posición adecuada; esto es, en el plano de intersección de dos esferas contiguas. Tengo varios ejemplos que muestran claramente que las abejas pueden hacer esto. Incluso en la tosca pared o reborde circular de cera que hay alrededor de un panal en formación, pueden observarse a veces flexiones que corresponden por su posición a los planos de las placas basales rómbicas de las futuras celdillas, pero la tosca pared de cera tiene siempre que ser acabada mordiéndola mucho las abejas por los dos lados. El modo como construyen las abejas es curioso: hacen siempre la primera pared tosca diez o veinte veces más gruesa que la delgadísima pared terminada de la celdilla, que ha de quedar finalmente. Comprenderemos cómo trabajan, suponiendo unos albañiles que primero amontonan un grueso muro de cemento y que luego empiezan a quitar por los dos lados hasta ras del suelo, hasta que dejan en el medio una delgadísima pared; los albañiles van siempre amontonando en lo alto del muro el cemento quitado, añadiéndole cemento nuevo. Así tendremos una delgadísima pared, creciendo continuamente hacia arriba; pero coronada siempre por una gigantesca albardilla. Por estar todas las celdillas, tanto las recién comenzadas como las terminadas coronadas por una gran albardilla de cera, las abejas pueden apiñarse en el panal y caminar por él sin estropear las delicadas paredes hexagonales. Estas paredes, según el profesor Miller ha comprobado amablemente para mi, varían mucho en grosor, teniendo 1/352 de pulgada de grueso, según el promedio de doce medidas hechas cerca del borde del panal, mientras que las placas basales romboidales son más gruesas, estando aproximadamente en la relación de tres a dos, teniendo un grueso de 1/229 de pulgada, como promedio de veintiuna medidas. Mediante la singular manera de construir que se acaba de indicar, se da continuamente fuerza al panal, con la máxima economía final de cera.

Parece al principio que aumenta la dificultad de comprender cómo se hacen las celdillas el que una multitud de abejas trabajen juntas; pues una abeja, después de haber trabajado un poco tiempo en una celdilla, va a otra, de modo que, como Huber ha observado, aun en el comienzo de la primera celdilla trabajan una veintena de individuos. Pude demostrar prácticamente este hecho cubriendo los bordes de las paredes hexagonales de una sola celdilla o el margen del reborde circular de un panal en construcción con una capa sumamente delgada de cera mezclada con bermellón; y encontré invariablemente que el color era muy delicadamente difundido por las abejas -tan delicadamente como pudiera haberlo hecho un pintor con su pincel-, por haber tomado partículas de la cera coloreada, del sitio en que había sido colocada, y haber trabajado con ella en los bordes crecientes de las celdillas de alrededor. La construcción parece ser una especie de equilibrio entre muchas abejas que están todas instintivamente a la misma distancia mutua, que se esfuerzan todas en excavar esferas iguales y luego construir o dejar sin morder los planos de intersección de estas esferas. Era realmente curioso notar, en casos de dificultad, como cuando dos partes de panal se encuentran formando un ángulo, con qué frecuencia las abejas derriban y reconstruyen de diferentes maneras la misma celdilla, repitiendo a veces una forma que al principio habían desechado.

Cuando las abejas tienen lugar en el cual pueden estar en la posición adecuada para trabajar -por ejemplo, un listón de madera colocado directamente debajo del medio de un panal que vaya creciendo hacia abajo, de manera que el panal tenga que ser construido sobre una de las caras del listón-, en este caso las abejas pueden poner los comienzos de una pared de un nuevo hexágono en su lugar preciso, proyectándose más allá de las otras celdillas completas. Es suficiente que las abejas puedan estar colocadas a las debidas distancias relativas, unas de otras, y respecto de las paredes de las últimas celdillas completas y, entonces, mediante sorprendentes esferas imaginarias, pueden construir una pared intermediaria entre dos esferas contiguas; pero, por lo que he podido ver, nunca muerden ni rematan los ángulos de la celdilla hasta que ha sido construida una gran parte, tanto de esta celdilla como de las contiguas. Esta facultad de las abejas de construir en ciertas circunstancias una pared tosca, en su lugar debido, entre las celdillas recién comenzadas, es importante, pues se relaciona con un hecho que parece, al pronto, destruir la teoría precedente, o sea, con el hecho de que las celdillas del margen de los avisperos son rigurosamente hexagonales; pero no tengo aquí espacio para entrar en este asunto. Tampoco me parece una gran dificultad el que un solo insecto -como ocurre con la avispa reina- haga celdillas hexagonales si trabajase alternativamente por dentro y por fuera de dos o tres celdillas empezadas a un mismo tiempo, estando siempre a la debida distancia relativa de las partes de las celdillas recién comenzadas, describiendo esferas o cilindros y construyendo planos intermediarios.

Como la selección natural obra solamente por acumulación de pequeñas modificaciones de estructura o de instinto, útil cada una de ellas al individuo en ciertas condiciones de vida, puede razonablemente preguntarse: ¿Cómo pudo haber aprovechado a los antepasados de la abeja común una larga sucesión gradual de modificaciones del instinto arquitectónico tendiendo todas hacia el presente plan perfecto de construcción? Creo que la respuesta no es difícil: las celdillas construidas como las de la abeja o las de la avispa ganan en resistencia y economizan mucho el trabajo y espacio y los materiales de que están construidas. Por lo que se refiere a la formación de cera, es sabido que las abejas, con frecuencia, están muy apuradas para conseguir el néctar suficiente, y míster Tegetmeier me informa que se ha probado experimentalmente que las abejas de una colmena consumen de doce a quince libras de azúcar seco para la producción de una libra de cera, de modo que las abejas de una colmena tienen que recolectar y consumir una cantidad asombrosa de néctar líquido para la secreción de la cera necesaria para la construcción de sus panales. Además, muchas abejas tienen que quedar ociosas varios días durante el proceso de secreción. Una gran provisión de miel es indispensable para mantener un gran número de abejas durante el invierno, y es sabido que la seguridad de la comunidad depende principalmente de que se mantengan un gran número de abejas. Por consiguiente, el ahorro de cera, por ahorrar mucha miel y tiempo empleado en recolectarla, ha de ser un elemento importante del buen éxito para toda familia de abejas. Naturalmente, el éxito de la especie puede depender del número de sus enemigos o parásitos, o de causas por completo distintas, y así ser totalmente independiente de la cantidad de miel que puedan reunir las abejas. Pero supongamos que esta última circunstancia determinó -como es probable que muchas veces lo haya determinado- el que un himenóptero afín de nuestros abejorros pudiese existir en gran número en un país, y supongamos, además, que la comunidad viviese durante el invierno y, por consiguiente, necesitase una provisión de miel; en este caso, es indudable que sería una ventaja para nuestro abejorro imaginario el que una ligera modificación en sus instintos lo llevase a hacer sus celdillas de cera unas próximas a otras, de modo que se entrecortasen un poco; pues una pared común, aun sólo para dos celdillas contiguas, ahorraría un poco de trabajo y cera. Por consiguiente, sería cada vez más ventajoso para nuestro abejorro el que hiciese sus celdillas cada vez más regulares, más cerca unas de otras, y agregadas formando una masa, como las de Melipona; pues, en este caso, una gran parte de la superficie limitante de cada celdilla serviría para limitar las contiguas, y se economizaría mucho trabajo y cera. Además, por la misma causa, sería ventajoso para Melipona el que hiciese sus celdillas más juntas y más regulares por todos conceptos que las hace al presente; pues, como hemos visto, las superficies esféricas desaparecerían por completo y serían reemplazadas por superficies planas, y la Melipona haría un panal tan perfecto como el de la abeja común. La selección natural no pudo llegar más allá de este estado de perfección arquitectónica; pues el panal de la abeja, hasta donde nosotros podemos juzgar, es absolutamente perfecto por lo que se refiere a economizar trabajo y cera.

De este modo, a mi parecer, el más maravilloso de todos los instintos conocidos el de la abeja común, puede explicarse porque la selección natural ha sacado provecho de numerosas modificaciones pequeñas y sucesivas de instintos sencillos; porque la selección natural ha llevado paulatinamente a las abejas a describir esferas iguales a una distancia mutua dada, dispuestas en dos capas, y a construir y excavar la cera en los planos de intersección de un modo cada vez más perfecto: las abejas, evidentemente, no sabían que describían sus esferas a una distancia mutua particular, más de lo que saben ahora como son los diferentes ángulos de los prismas hexagonales y de las placas rómbicas basales; pues la fuerza propulsora del proceso de selección natural fue la construcción de celdillas de la debida solidez y del tamaño y forma adecuados para las larvas, realizado esto con la mayor economía posible del tamaño y cera. Aquellos enjambres que hicieron de este modo las mejores celdillas con el menor trabajo y el menor gasto de miel para la secreción de cera, tuvieron el mejor éxito y transmitieron sus instintos nuevamente adquiridos a nuevos enjambres, los cuales, a su vez, habrán tenido las mayores probabilidades de buen éxito en la lucha por la existencia.

Objeciones a la teoría de la selección natural aplicada a los insectos. -Insectos neutros o estériles.

A la opinión precedente sobre el origen de los instintos se ha hecho la objeción de que «las variaciones de estructura y de instinto tienen que haber sido simultáneas y exactamente acopladas entre sí, pues una modificación en aquélla sin el correspondiente cambio inmediato en éste, hubiese sido fatal. La fuerza de esta objeción descansa por completo en la admisión de que los cambios en los instintos y conformación son bruscos. Tomemos como ejemplo el caso del carbonero (Parus major), al que se ha hecho alusión en un capitulo precedente; esta ave, muchas veces, estando en una rama, sujeta entre sus patas las simientes del tejo y las golpea con el pico, hasta que llega al núcleo. Ahora bien; ¿qué especial dificultad habría en que la selección natural conservase todas las ligeras variaciones individuales en la forna del pico que fuesen o que estuviesen mejor adaptadas para abrir las simientes hasta que se formasen un pico tan bien conformado para este fin como el del trepatroncos, al mismo tiempo que la costumbre, o la necesidad, o la variación espontánea del gusto llevasen al ave a hacerse cada vez más granívora? En este caso, se supone que el pico se modifica lentamente por selección natural, después de lentos cambios de costumbres o gustos, y de acuerdo con ellos; pero dejemos que los pies del carbonero varíen y se hagan mayores por correlación con el pico, o por alguna otra causa desconocida, y no es imposible que estos pies mayores lleven al ave a trepar cada vez más, hasta que adquiera el instinto y la facultad de trepar tan notables del trepatroncos. En este caso, se supone que un cambio gradual de conformación lleva al cambio de costumbres instintivas. Tomemos otro ejemplo: pocos instintos son tan notables como el que lleva a la salangana a hacer su nido por completo de saliva condensada. Algunas aves construyen sus nidos de barro, que se cree que está humedecido con saliva, y una de las golondrinas de América del Norte hace su nido, según he visto, de tronquitos aglutinados con saliva, y hasta con plaquitas formadas de esta substancia. ¿Es, pues, muy improbable que la selección natural de aquellos individuos que segregasen cada vez más saliva produjese al fin una especie con instintos que la llevasen a despreciar otros materiales y a hacer sus nidos exclusivamente de saliva condensada? Y lo mismo en otros casos. Hay que admitir, sin embargo, que en muchos no podemos conjeturar si fue el instinto o la conformación lo que primero varió.

BOOK: El origen de las especies
12.59Mb size Format: txt, pdf, ePub
ads

Other books

The Unbinding by Walter Kirn
Ravished by the Rake by Louise Allen
Protective Instincts by Mary Marvella
Jubana! by Gigi Anders
Cupid's Way by Joanne Phillips
Wives and Champions by Tina Martin
Reign of Madness by Lynn Cullen


readsbookonline.com Copyright 2016 - 2024