Read Cybersecurity and Cyberwar Online

Authors: Peter W. Singer Allan Friedman,Allan Friedman

Cybersecurity and Cyberwar (4 page)

But cyberspace, like life, is constantly evolving. The hybrid combination of technology and the humans that use it is always changing, inexorably altering everything from cyberspace's size and scale to the technical and political rules that seek to guide it. As one expert put it, “The geography of cyberspace is much more mutable than other environments. Mountains and oceans are hard to move, but portions of cyberspace can be turned on and off with
the click of a switch
.” The essential features remain the same, but the topography is in constant flux. The cyberspace of today is both the same as but also utterly different from the cyberspace of 1982.

The hardware and software that make up cyberspace, for instance, were originally designed for computers operating from fixed wires and telephone lines. Mobile devices were first the stuff of
Star Trek
and then only for the drug dealers on
Miami Vice
who could afford to have something as exotic as a “car phone.” Today, a growing percentage of computing is moving onto mobile devices, so much so
that we've seen toddlers punch the screens of desktop computers as if they were broken iPads.

Along with the technology of cyberspace, our expectations of it are likewise evolving. This generates new norms of behavior, from how kids “play” to the even more powerful concept that we should all have access to cyberspace and be able to express our personal opinions within it, on everything from a Hollywood star's new hairdo to what we think of an authoritarian leader.

So what constitutes the Internet itself is evolving before us in an even more fundamental way. It is simultaneously becoming massively bigger (each day some 2,500,000,000,000,000,000 bytes are added to the global supply of digital information) and far more personalized. Rather than passively receiving this onslaught of online information, the individual users are creating and tailoring sites to their personal use, ultimately revealing more about themselves online. These sites range from social networks like Facebook in the United States and RenRen in China to microblogs like Twitter and the Chinese equivalents Tencent and Sina. Indeed, microblogs in China (called Weibo) have taken off to the extent that 550 million were
registered
in 2012.

Thus, while cyberspace was once just a realm of communication and then e-commerce (reaching over $10 trillion a year in sales), it has expanded to include what we call “critical infrastructure.” These are the underlying sectors that run our modern-day civilization, ranging from agriculture and food distribution to banking, healthcare, transportation, water, and power. Each of these once stood apart but are now all bound together and linked into cyberspace via information technology, often through what are known as
“supervisory control and data acquisition”
or SCADA systems. These are the computer systems that monitor, adjust switching, and control other processes of critical infrastructure. Notably, the private sector controls roughly 90 percent of US critical infrastructure, and the firms behind it use cyberspace to, among other things, balance the levels of chlorination in your city's water, control the flow of gas that heats your home, and execute the financial transactions that keep currency prices stable.

Cyberspace is thus evolving from “the nervous system—
the control system
of our economy,” as President George W. Bush once said, into something more. As
Wired
magazine editor Ben Hammersley
describes, cyberspace is becoming “the dominant platform for life in the 21st century.”

We can bitch about it, but Facebook, Twitter, Google and all the rest are, in many ways the very definition of modern life in the democratic west. For many, a functioning Internet with freedom of speech, and a good connection to the social networks of our choice is a sign not just of modernity, but of civilization itself. This is not because people are “addicted to the video screen,” or have some other patronizing psychological diagnosis. But because the Internet is where we live. It's where we do business, where we meet, where we fall in love. It is the central platform for business, culture, and personal relationships. There's not much else left. To misunderstand the centrality of these services to today's society is to make a fundamental error. The Internet isn't a luxury addition to life; for most people,
knowingly or not, it is life
.

But just as in life, not everyone plays nice. The Internet that we've all grown to love and now need is increasingly becoming a place of risk and danger.

Where Did This “Cyber Stuff” Come from Anyway? A Short History of the Internet

“Lo.”

This was the very first real word transmitted over the computer network that would evolve into the Internet. But rather than the beginning of some profound proclamation like “Lo and behold,” “Lo” was instead the product of a system failure. In 1969, researchers at UCLA were trying to log into a computer at the Stanford Research Institute. But before they could type the “g” in the word “log,” the computer at
the Stanford end of the network crashed
. However, the ARPANET project, so named as it was funded by the Advanced Research Projects Agency (ARPA), would eventually transform how computers shared data and, with that, everything else.

Electronic communication networks have been shaping how we share information since the invention of the telegraph, the device that some now look back on and call the “Victorian Internet.” The hype around that old technology were similarly high; contemporaries declared that, with the telegraph, “It is impossible that old prejudices and
hostilities should longer exist
.”

What makes the Internet distinct from prior communication networks like the old telegraphs and then telephone networks, however, is that it is packet-switched instead of circuit-switched. Packets are small digital envelopes of data. At the beginning of each packet, essentially the “outside” of the envelope, is the header, which contains details about the network source, destination, and some basic information about the packet contents. By breaking up flows of data into smaller components, each can be delivered in an independent and decentralized fashion, then reassembled at the endpoint. The network routes each packet as it arrives, a dynamic architecture that creates both flexibility and resiliency.

Packet-switching was not developed to allow the United States to maintain communications even in the event of a nuclear attack, a common myth. It was really just developed to better enable more reliable, more efficient connections between computers. Prior to its rise in the 1970s, communication between two computers required a dedicated circuit, or preassigned bandwidth. This direct link meant those resources could not be used by anyone else, even when no data was being transmitted. By breaking these conversations into smaller parts, packets from multiple distinct conversations could share the same network links. It also meant that if one of the network links between two machines went down mid-communication, a transmission could be automatically rerouted with no apparent loss of connection (since there was never a connection to begin with).

ARPA (now DARPA, with a D for “Defense” added) was an organization developed by the Pentagon to avoid technological surprise by leaping ahead in research. Computers were proliferating in the late 1960s, but even more researchers wanted to use them than was available. To ARPA, that meant finding ways to allow people at different institutions to take advantage of unused computer time around the country.

Rather than have dedicated—and expensive—connections between universities, the vision was a network of shared data links, sharing computational resources. Individual machines would each be connected with an Interface Message Processor that handled the actual network connection. This network was ARPANET, home of the first “Lo” and start of the modern cyber era. That first 1969 link from UCLA to Stanford grew to link forty nodes in 1972. Soon more universities and research centers around the world joined this first network, or alternatively created their own networks.

For the purposes of the modern Internet, a series of packets sent between machines on a single network does not count as an “internet.” Internet implies connecting many different networks, in this case these various other computer networks beyond ARPANET that soon emerged but remained unlinked.

The challenge was that different networks used very different underlying technology. The technical problem boiled down to abstracting these differences and allowing efficient communication. In 1973, the solution was found. Vint Cerf, then a professor at Stanford, and Robert Khan of ARPA refined the idea of a common transmission protocol. This “protocol” established the expectations that each end of the communication link should make of the other. It began with the computer equivalent of a three-way handshake to establish a connection, continuing through how each party should break apart the messages to be reassembled, and how to control transmission speeds to automatically detect bandwidth availability.

The brilliance of the model is how it breaks the communication into “layers” and allows each layer to function independently. These packets, in turn, can be sent over any type of network, from sound waves to radio waves to light pulses on a glass fiber. Such Transport Control Protocols, or TCPs, could be used over all sorts of packet protocols, but we now use a type called the Internet Protocol, or IP, almost exclusively in the modern Internet.

This protocol enabled the creation of a network of networks. But, of course, the Internet didn't stop there. The new links excelled at connecting machines, but humans excel at making technology conform to their whims. As people shared machines for research, they started leaving messages for each other, simple files that could be
edited to form a conversation. This became clunky, and in 1972 Ray Tomlinson at the technical consulting firm BBN wrote a basic program to read, compose, and send messages. This was e-mail: the first Internet “killer app.” Within a year,
a majority of traffic across the network
originally created for research was e-mail. Now networked communication was about people.

The last step in creating the modern Internet was eliminating barriers to entry. Early use was limited to those who had access to the networked computers at research and defense institutions. These organizations communicated via dedicated data lines. As the evident value of networked communication grew and the price of computers dropped, more organizations sought to join. Modems, which convert data to sound waves and back, allowed basic phone lines to serve as links to other computers.

Soon, researchers outside computer science wanted access, not just to take advantage of the shared computing resources, but also to study the new networking technology itself. The US National Science Foundation then connected the existing supercomputering centers around the country into the NSFnet, which grew so rapidly that the expansion required commercial management. Each upgrade brought greater demand, the need for more capacity, and
independently organized infrastructure
. The architecture of a “backbone” that managed traffic between the different regional networks emerged as the efficient solution.

This period also saw the introduction of the profit motive in Internet expansion. For instance, by this point Vint Cerf had joined the telecommunications firm MCI. In 1983, he led efforts to start MCI mail, the first commercial e-mail service on the Internet. By the late 1980s, it became obvious that managing the nascent Internet was not the business of the research community. Commercial actors could provide the necessary network services supporting the Internet and become avid consumers as well. So the White House Office of Science and Technology developed a plan to expand and commercialize the backbone services, seeing it as the only way that the new Internet could truly take off.

The planners envisioned a decade-long process, though, with the final stages of commercial handover not completed until the late 1990s. Fortunately, a young senator from Tennessee became convinced it should speed up. In 1989, Al Gore authored a bill calling
for
quicker privatization of the network
. While he would later make a slight overstatement that he “took the initiative in creating the Internet,” this move by Congress to accelerate things was crucially important to the Internet's expansion. By the time Gore was Vice President in 1994, the NSF was turning over official control of regional backbone connections to private interests.

This privatization coincided with various new inventions and improvements that then democratized and popularized the Internet. In 1990, a researcher at the European research center CERN in Switzerland took a relatively obscure form of presenting information in a set of linked computer documents and built a new networking interface for it. With this HyperText Transfer Protocol (HTTP), and an accompanying system to identify the linked documents (URLs), Tim Berners-Lee “invented” the World Wide Web as we now look at it. Amusingly, when Berners-Lee tried to present it at an academic conference, his breakthrough wasn't considered worthy enough even to make a formal panel. Instead, he was relegated to showing a poster on it in a hallway. A few years later, researchers at the University of Illinois introduced the Mosaic web browser, which simplified both web design and introduced the new practice of “web surfing” for the general public.

And whether we like to admit it or not, this is the period when the pornography industry proved integral to the Internet's history. A darker domain that some estimate makes up 25 percent of all Internet searches,
the smut industry
drove both new online users and new online uses like instant messaging, chatrooms, online purchasing, streaming video, trading files, and webcams (and the growing demands each of these placed on bandwidth, driving more underlying business). “Of course pornography has played a key role in the Web,” says Paul Saffo, an analyst with the Institute for the Future, a Silicon Valley think tank. “Porn is to new media formats what acne is to teenagers,” he said. “It's just part of
the process of growing up
.”

Other books

Claimed by a Demon King by Felicity Heaton
Bollywood Babes by Narinder Dhami
La tumba del niño by Eugenio Prados
Wife for Hire by Janet Evanovich
Jack In The Green by Charles de Lint
Planet Janet in Orbit by Dyan Sheldon
Nobody But You by Jill Shalvis


readsbookonline.com Copyright 2016 - 2024