Read Traffic Online

Authors: Tom Vanderbilt

Traffic (26 page)

But those same means of seduction—the wide roads, the generous lane widths, the capacious sight distances, the large medians and shoulders—are the same things that are theoretically meant to ensure the driver’s safety. This is akin to giving a lot of low-fat ice cream and cookies to someone trying to lose weight. The driver, like the would-be dieter, is wont to “consume” the supposed health benefits. Consider a key concept in traffic safety engineering: the “design speed” of roads. This is a confusing concept, not least because engineers are often not so good at explaining their concepts to nonengineers. The so-called Green Book, the bible of U.S. highway engineers, defines “design speed” as the following: “The maximum safe speed that can be maintained over a specified section of highway when conditions are so favorable that the design features of the highway govern.” Got that? No? don’t worry—it confuses traffic people too. An easier way to understand design speed is to think of the speed that most people—what engineers refer to as the “85th percentile” of drivers—generally like to travel (thus leaving out the suicidal speeders and stubborn slowpokes). As we saw in the previous chapters, leaving it up to drivers to figure out a safe speed is itself risky business.

Even more confusingly, sometimes this speed matches the speed limit, and sometimes it does not. Once engineers figure out the 85th percentile speed, they try to bring, where possible, the various features of the highway (e.g., the shoulders, the curves, the “clear zones” on the side of the road) into line with that speed. So does this mean that everyone then travels at the “safe” design speed? Not exactly. As Ray Krammes, the technical director of the FHWA’s Office for Safety Research and Development, explained to me, drivers routinely exceed the design speed. “We know we can drive faster than the design speed,” he said. “We’re doing it every day. We set a design speed of sixty and people are driving seventy. If it’s a seventy-miles-per-hour design, there are a number of people out there pushing seventy-five or eighty miles per hour.” Drivers, in effect, are every day loading twenty-one people on an elevator that has a capacity of twenty and hoping that there’s
just
that extra margin of safety left.

As we have seen, traffic engineers face a peculiar and rather daunting task: dealing with humans. When structural engineers build a bridge, no one has to think about how the stress factors and loads of the bridge will affect the behavior of the wind or water. The wind or water will not take a safer bridge as an invitation to blow or flow harder. It’s a different story when engineers design a road. “When the engineers build something,” Granda says, “the question everybody should ask is, What effect will it have on the driver? How will the driver react, not only today, but after the driver sees that sign or lane marking over a period of time? Will they adapt to it?”

To try to answer these questions, Granda, who works in the Human Centered Systems Laboratory at FHWA, spends his days running drivers on test roads in the agency’s driving simulator. “It is hard to know how human beings will react,” he notes. “We can decide to do something, and we think we know how they’re going to react. You don’t really know.” As Bill Prosser, a veteran highway designer for the agency, described it to me, “there are three things out there that affect the way a highway operates: the design, the vehicle, and the driver. We as design engineers can only control one of those. We can’t control the driver, whether they’re good, bad, or indifferent.”

The best thing engineers can do, the thinking has gone, is make it easy. “You can’t violate driver expectation,” says Granda. Tests of what researchers call “expectancy” routinely show that it takes drivers longer to respond to something they do not expect than something they do expect. Think of the mental models described in Chaper 1: People were faster to respond when character traits corresponded to names in a way they expected (“strong John” versus “strong Jane”). Similar things happen in traffic. It takes us longer to process the fact that a car is approaching in
our
lane on a two-lane highway, instead of, as we would expect, in the other lane. A driver in Maine will brake faster for a moose than for a penguin. As David Shinar, a traffic researcher in Israel, has described it, “That ‘second look’ that we colloquially say we take when ‘we can’t believe our eyes’ may be a very real and time-consuming effort.”

This is expressed on the highway in all kinds of subtle ways. Highway engineers have long known that a set of curves, seemingly a dangerous road segment, is less dangerous than a curve that comes after a long stretch of straight highway. A similar principle exists in baseball: A batter can more easily hit a curveball if he sees nothing but curveballs than when he is thrown a curveball after a steady diet of fastballs. So engineers strive for what they call “design consistency,” which basically means: Tell drivers what to expect, and then give it to them.

The flip side of this is that too
much
expectancy can be boring. You might feel, for instance, that interchanges, where the on-ramps and off-ramps swirl into the highway, are the most dangerous areas on the highway. They are certainly the most stressful, and they are home to the most crashes. But that’s not where most people lose their lives. “In terms of fatalities,” says Michael Trentacoste, the director of the Turner-Fairbank center, “the highest number is ‘single-vehicle run-off road.’” I thought back to my near accident in Spain. “If you look at Wyoming,” he continues, “they have a tremendous amount of single-vehicle run-off-the-road accidents. A few years ago they had the highest percentage of run-off-the-road [accidents] on the interstate. You’ve got long stretches, a lot of nighttime driving, people falling asleep.”

This is why road designers will often introduce subtle curvatures, even when it is not warranted by the landscape. One rough rule of thumb for highways is that drivers should not drive for more than a minute without having a bit of curve. But highway curves, most of which can be driven much like any other section, are often not enough to keep a tired driver awake. Which is why engineers, starting in the 1980s, began to turn to roadside rumble strips. The results were striking. After they were installed on the Pennsylvania Turnpike, run-off-road crashes dropped 70 percent in the period studied.

Those rumble strips would hardly lull drivers into falling asleep, knowing they’ll be startled awake if they drifted off the road. But does something about the highway itself help drivers fall asleep in the first place? The line between safety and danger is not always well defined, nor is it always easy to locate.

         

When the U.S. Interstate Highway System was first built, engineers could not know what to expect once everyone got on the highway at the same time. “We never did have a cookbook when we started building the Interstate,” the FHWA’s Prosser told me. Engineers are still learning what works and what does not. Exiting on the left on interstate highways, a fixture in “the early days,” has been phased out wherever possible—partially because its rarity makes us slower to react. Another fixture, the cloverleaf interchange, so named because its four looping ramps look like a clover from above, has also fallen out of favor. “When we started building interstates they were pretty much the interchange of choice,” said Prosser. Cloverleafs were originally a brilliant, space-saving solution to a major problem: how to get traffic to flow across to two interconnecting roads without stopping. This made them useful for joining two intersecting highways (they are also quite good at preventing people from entering the freeway in the wrong direction of travel, an act that is said to be responsible for 350 deaths per year in the United States alone).

But they have one big drawback: The on-ramp loop enters the highway just beyond where cars are exiting via the off-ramp loop. The two streams must mix. Engineers call this the “weaving section,” a mysterious, traffic-tossed tempest full of what engineers call “turbulence” and “friction,” in which people coming onto and getting off the highway end up in each other’s way. Drivers at different speeds, scanning for directional signs, have to probe openings (i.e. make “gap acceptance” decisions) and sometimes get across several lanes—often quite suddenly. Interchanges, as it happens, are where most crashes on freeways occur—according to studies, the shorter the weave section, the higher the crash rate. With light traffic, the cloverleaf presents less of a problem, but when “weaving volume” on the two loops tops the magic number of one thousand vehicles per hour (hardly a rarity these days), things begin to break down. Because of the curious nonlinear dynamics of traffic, when traffic volume doubles, the length of weaving section required to keep it moving smoothly
triples.
Over time, engineers have responded by moving the weaving section out of the main highway flow and onto special “collector” lanes, which, where possible, seems to be safer and more efficient.

Highways are continuing to evolve. Recently, as traffic volumes have grown, and with new highway building increasingly unaffordable or undesirable, some agencies have begun adding new lanes to highways by either eliminating the shoulder lane or making the existing lanes narrower. In theory, this is riskier because on narrow lanes there is a greater chance of one car drifting into another. There is literally less room for error. On the other hand, wider lanes, which are presumably safer, have been shown to increase speed and may encourage drivers to drive less cautiously. Indeed, some reports have even suggested that lanes wider than the typical U.S. twelve-foot standard may actually be
less
safe. So far, studies that have looked into the narrowing of highway lanes have come to mixed conclusions on whether the new layouts are more or less safe. In some cases, the difference was not statistically significant. This suggests that the way drivers behave is as important as the way a road is designed. As Ezra Hauer, a Canadian engineer and traffic-safety expert, once put it, “Drivers adapt to the road they see.”

There is a simple mantra you can carry about with you in traffic: When a situation feels dangerous to you, it’s probably more safe than you know; when a situation feels safe, that is precisely when you should feel on guard. Most crashes, after all, happen on dry roads, on clear, sunny days, to sober drivers.

The Trouble with Traffic Signs—and How Getting Rid of Them Can Make Things Better for Everyone

Try to remember the last time you saw, while driving, a “School Zone” or “Children at Play” sign. Chances are you will not remember, but if you can, now try to recall what you did when you saw it. Did you suddenly slow? Did you scan for children? If you’re like most people, you did nothing. You may not have understood what it was asking you to do, which is rather common—in one study, subjects who were shown a sign warning,
WATCH FOR FALLEN ROCKS,
were split equally between those who said they would look for rocks falling at the moment and speed up and those who said they would slow down and look for rocks already on the road. Perhaps signs should simply say,
WATCH FOR ALL ROCKS, EVERYWHERE.

More likely, the reason you did nothing when you saw the sign is that there were no children playing. If there were children playing, you probably saw them before you saw the sign. “Children at Play” signs have not been shown to reduce speeds or accidents, and most traffic departments will not put them up. Yet why do we seem to see so many? City governments usually post them to assuage complaints by neighborhood residents that people are speeding down their streets. They may have even been put up after a child was hit or killed by a driver, in which case it would probably be more effective to erect a sign saying just that.

Similarly, drivers routinely see signs warning of deer crossings (in the United States) or elephant crossings (in Sri Lanka) or camel crossings (in Tunisia). It is difficult to say what’s going on in the mind of a driver when he or she sees a deer or elephant or camel crossing sign, but studies have shown that most drivers do not change their speed at all. A Colorado trial featured a special animated deer sign (no, it wasn’t Bambi). Researchers presumed that the animated sign would draw more attention and heighten driver awareness. For a few weeks, it was turned away from the road, then turned back. There were actually
more
deer killed when the sign was activated than when it was not, even though fewer deer had crossed. The researchers then went so far as to place a deer carcass next to the animated sign—only then did drivers finally slow.

Traffic engineers have tried putting signs up only during migratory seasons or using special flashing signs equipped with sensors to detect the presence of deer, but these so-called dynamic signs are not only costly but prone to false alarms and maintenance issues, not to mention being riddled with buckshot, particularly in parts of rural America. (Maybe in the off-season deer hunters practice on deer signs.) Researchers in Wyoming who put up a special deer-sensing, flashing system were able to get some drivers to slow down when they included a deer decoy, but they walked away with the opinion that “these reductions in vehicle speed would most likely not reduce the probability of a deer-vehicle collision.” Maybe deer should simply be dressed in head-to-toe blaze orange outfits, like the people hunting them!

Perhaps the most absurd warning-sign case involved moose advisories in Newfoundland. One foggy stretch of road was home to not only many car-moose collisions but many collisions between cars and cars stopping to take pictures of moose. And so signs were erected that featured full-size, reflective silhouettes of moose. Unfortunately, tourists found these pretty interesting too, and as they slowed or stopped to take photos, the moose signs themselves became crash hot spots. The next logical step? Create new signs that read
CAUTION: MOOSE SIGNS AHEAD
.

Many traffic signs have become like placebos, giving false comfort to the afflicted, or simple boilerplate to ward off lawsuits, the roadway version of the Kellogg’s Pop-Tarts box that says, “Warning: Pastry Filling May Be Hot When Heated.” Engineers insist that they are necessary to protect municipalities from liability lawsuits.

Other books

The Executioner by Suzanne Steele
The House of Blue Mangoes by Davidar, David
Body and Bread by Nan Cuba
El encantador de gatos by Carlos Rodríguez
Chains of Folly by Roberta Gellis
Purely Professional by Elia Winters


readsbookonline.com Copyright 2016 - 2024