Read The Checklist Manifesto Online

Authors: Atul Gawande

The Checklist Manifesto (12 page)

I asked a WHO official whether the organization had a guidebook on how to carry out successful global public health programs. She regarded me with a look that a parent might give a toddler searching the dog’s mouth for the thing that makes the barking noise. It’s a cute idea but idiotic.

I searched anyway. I asked people around WHO for examples of public health interventions we could learn from. They came up with instances like the smallpox vaccination campaign that eradicated
the scourge from the world in 1979 and the work of Dr. John Snow famously tracing a deadly 1854 London cholera outbreak to water in a public well. When the disease struck a London neighborhood that summer, two hundred people died in the first three days. Three-quarters of the area’s residents fled in panic. Nonetheless, by the next week, some five hundred more died. The dominant belief was that diseases like cholera were caused by “miasmas”—putrefied air. But Snow, skeptical of the bad-air theory, made a map of where the deceased had lived and found them clustered around a single water source, a well in Soho’s Broad Street. He interviewed the bereaved families about their habits. He made a careful statistical analysis of possible factors. And he concluded that contaminated water had caused the outbreak. (It was later discovered that the well had been dug next to a leaking cesspit.) Snow persuaded the local council to remove the water well’s pump handle. This disabled the well, ended the spread of the disease, and also established the essential methods of outbreak investigation that infectious disease specialists follow to this day.

All the examples, I noticed, had a few attributes in common: They involved simple interventions—a vaccine, the removal of a pump handle. The effects were carefully measured. And the interventions proved to have widely transmissible benefits—what business types would term a large ROI (return on investment) or what Archimedes would have called, merely, leverage.

Thinking of these essential requirements—simple, measurable, transmissible—I recalled one of my favorite public health studies. It was a joint public health program conducted by the U.S. Centers for Disease Control and HOPE, a charitable organization in Pakistan, to address the perilous rates of premature death
among children in the slums of Karachi. The squatter settlements surrounding the megacity contained more than four million people living under some of the most crowded and squalid conditions in the world. Sewage ran in the streets. Chronic poverty and food shortages left 30 to 40 percent of the children malnourished. Virtually all drinking water sources were contaminated. One child in ten died before age five—usually from diarrhea or acute respiratory infections.

The roots of these problems were deep and multifactorial. Besides inadequate water and sewage systems, illiteracy played a part, hampering the spread of basic health knowledge. Corruption, political instability, and bureaucracy discouraged investment in local industry that might provide jobs and money for families to improve their conditions. Low global agriculture prices made rural farming life impossible, causing hundreds of thousands to flock to the cities in search of work, which only increased the crowding. Under these circumstances, it seemed unlikely that any meaningful improvement in the health of children could be made without a top-to-bottom reinvention of government and society.

But a young public health worker had an idea. Stephen Luby had grown up in Omaha, Nebraska, where his father chaired the obstetrics and gynecology faculty at Creighton University. He attended medical school at the University of Texas Southwestern. But for some reason he was always drawn to public health work. He took a CDC job investigating infectious outbreaks in South Carolina, but when a position came open in the CDC’s Pakistan office he jumped to take it. He arrived in Karachi with his schoolteacher wife and began publishing his first investigations of conditions there in the late nineties.

I had spoken to him once about how he thought through the difficulties. “If we had the kinds of water and sewage systems we’ve got in Omaha, we could solve these problems,” he said. “But you have to wait decades for major infrastructure projects.” So instead, he said, he looked for low-tech solutions. In this case, the solution he came up with was so humble it seemed laughable to his colleagues. It was soap.

Luby learned that Procter & Gamble, the consumer product conglomerate, was eager to prove the value of its new antibacterial Safeguard soap. So despite his colleagues’ skepticism, he persuaded the company to provide a grant for a proper study and to supply cases of Safeguard both with and without triclocarban, an antibacterial agent. Once a week, field-workers from HOPE fanned out through twenty-five randomly chosen neighborhoods in the Karachi slums distributing the soap, some with the antibacterial agent and some without. They encouraged people to use it in six situations: to wash their bodies once daily and to wash their hands every time they defecated, wiped an infant, or were about to eat, prepare food, or feed it to others. The field-workers then collected information on illness rates among children in the test neighborhoods, as well as in eleven control neighborhoods, where no soap was distributed.

Luby and his team reported their results in a landmark paper published in the
Lancet
in 2005. Families in the test neighborhoods received an average of 3.3 bars of soap per week for one year. During this period, the incidence of diarrhea among children in these neighborhoods fell 52 percent compared to that in the control group, no matter which soap was used. The incidence of pneumonia fell 48 percent. And the incidence of impetigo, a bacterial skin infection, fell 35 percent. These were stunning results.
And they were achieved despite the illiteracy, the poverty, the crowding, and even the fact that, however much soap they used, people were still drinking and washing with contaminated water.

Ironically, Luby said, Procter & Gamble considered the study something of a disappointment. His research team had found no added benefit from having the antibacterial agent in the soap. Plain soap proved just as effective. Against seemingly insuperable odds, it was more than good enough. Plain soap was leverage.

The secret, he pointed out to me, was that the soap was more than soap. It was a behavior-change delivery vehicle. The researchers hadn’t just handed out Safeguard, after all. They also gave out instructions—on leaflets and in person—explaining the six situations in which people should use it. This was essential to the difference they made. When one looks closely at the details of the Karachi study, one finds a striking statistic about the house-holds in both the test and the control neighborhoods: At the start of the study, the average number of bars of soap house holds used was not zero. It was two bars per week. In other words,
they already had soap.

So what did the study really change? Well, two things, Luby told me. First, “We removed the economic restraint on purchasing soap. People say soap is cheap and most house holds have soap. But we wanted people to wash a lot. And people are quite poor. So we removed that as a barrier.” Second, and just as important, the project managed to make soap use more systematic.

Luby and his team had studied washing behavior in Pakistan, Bangladesh, and other locations around South Asia, and they found that almost everyone washes their hands after defecation. “There are strong ideas about purity in South Asia,” he said. Even
when the place to wash is far away, people go and clean their hands over 80 percent of the time, a rate that would put most denizens of airport bathrooms to shame. But the washing was not very effective, the researchers found. Often people did it too quickly. Or they cleaned just the “involved” hand. Or they used ash or mud rather than soap and water.

The soap experiment changed that. The field-workers gave specific instructions on hand-washing technique—on the need to wet both hands completely, to lather well, to rinse all the soap off, even if, out of necessity, as the published report noted, “hands were typically dried on participants’ clothing.” The instructions also got people used to washing at moments when they weren’t used to doing so. “Before preparing food or feeding a child is not a time when people think about washing,” Luby explained. The soap itself was also a factor. “It was really nice soap,” he pointed out. It smelled good and lathered better than the usual soap people bought. People liked washing with it. “Global multinational corporations are really focused on having a good consumer experience, which sometimes public health people are not.” Lastly, people liked receiving the soap. The public health field-workers were bringing them a gift rather than wagging a finger. And with the gift came a few basic ideas that would improve their lives and massively reduce disease.

Thinking back on the experiment, I was fascinated to realize that it was as much a checklist study as a soap study. So I wondered: Could a checklist be our soap for surgical care—simple, cheap, effective, and transmissible? I still had a hard time grasping how to
make a checklist that could be both simple and effective for the manifold problems posed by surgery on a global scale. I was uncertain that it was even possible. But several of my colleagues were more sanguine when the idea was raised at the Geneva meeting.

One brought up the experience of Columbus Children’s Hospital, which had developed a checklist to reduce surgical infections. Infection is one of the most common complications of surgery in children. And the most effective way to prevent it, aside from using proper antiseptic technique, is to make sure you give an appropriate antibiotic during the sixty-minute window before the incision is made.

The timing is key. Once the incision is made, it is too late for the antibiotic. Give it more than sixty minutes before the procedure, and the antibiotic has worn off. But give it on time and studies show this single step reduces the infection risk by up to half. Even if the antibiotic is squeezed into the bloodstream only thirty seconds before the incision is made, researchers have found, the circulation time is fast enough for the drug to reach the tissue before the knife breaches the skin.

Yet the step is commonly missed. In 2005, Columbus Children’s Hospital examined its records and found that more than one-third of its appendectomy patients failed to get the right antibiotic at the right time. Some got it too soon. Some got it too late. Some did not receive an antibiotic at all.

It seems dumb. How hard could this be? Even people in medicine assume we get this kind of simple task right 100 percent of the time. But in fact we don’t. With all the flurry of things that go on when a patient is wheeled into an operating room, this is exactly the sort of step that can be neglected. The anesthesiologists are the ones who have to provide the antibiotic, but they are
concentrating on getting the patient safely and calmly to sleep—and this is no small matter when that patient is a scared eight-year-old lying naked on a cold table in a room full of strangers getting ready to cut into her. Add in an equipment malfunction (“Is that red light supposed to be blinking like that?”), or the patient’s asthma acting up, or a page for the surgeon to call the emergency room, and you begin to see how something as mundane as an antibiotic can slip past.

The hospital’s director of surgical administration, who happened to be not only a pediatric cardiac surgeon but also a pilot, decided to take the aviation approach. He designed a preincision “Cleared for Takeoff ” checklist that he put on a whiteboard in each of the operating rooms. It was really simple. There was a check box for the nurse to verbally confirm with the team that they had the correct patient and the correct side of the body planned for surgery—something teams are supposed to verify in any case. And there was a further check box to confirm that the antibiotics were given (or else judged unnecessary, which they can be for some operations).

There wasn’t much more to it. But getting teams to stop and use the checklist—to make it their habit—was clearly tricky. A couple of check boxes weren’t going to do much all by themselves. So the surgical director gave some lectures to the nurses, anesthesiologists, and surgeons explaining what this checklist thing was all about. He also did something curious: he designed a little metal tent stenciled with the phrase
Cleared for Takeoff
and arranged for it to be placed in the surgical instrument kits. The metal tent was six inches long, just long enough to cover a scalpel, and the nurses were asked to set it over the scalpel when laying out the instruments before a case. This served as a reminder to run the checklist
before making the incision. Just as important, it also made clear that the surgeon could not start the operation until the nurse gave the okay and removed the tent, a subtle cultural shift. Even a modest checklist had the effect of distributing power.

The surgical director measured the effect on care. After three months, 89 percent of appendicitis patients got the right antibiotic at the right time. After ten months, 100 percent did. The checklist had become habitual—and it had also become clear that team members could hold up an operation until the necessary steps were completed.

I was intrigued. But I remained doubtful. Yes, using a checklist, this one hospital got one aspect of care to go consistently right for surgical patients. I was even willing to believe their surgical infection rates had fallen significantly as a result. But to take a serious bite out of overall complication rates, I argued, we needed an approach that would help across the much wider range of ways in which surgery can go wrong.

Then Richard Reznick, the chairman of surgery at the University of Toronto, spoke up. He explained that his hospital had completed a feasibility trial using a much broader, twenty-one-item surgical checklist. They had tried to design it, he said, to catch a whole span of potential errors in surgical care. Their checklist had staff verbally confirm with one another that antibiotics had been given, that blood was available if required, that critical scans and test results needed for the operation were on hand, that any special instruments required were ready, and so on.

Other books

Donners Bend by Alexa V James
Rough Treatment by John Harvey
Dark Secret by Anderson, Marina
lastkingsamazon by Northern, Chris
Goddess by Laura Powell
What Has Become of You by Jan Elizabeth Watson
The Dragon's Cave by Isobel Chace


readsbookonline.com Copyright 2016 - 2024