Authors: Jonah Lehrer
The point is that the emotional data requires careful analysis. Audience research is a blunt tool, a summary of first impressions, but it can be sharpened. By examining the feelings registered on the dial, a trained observer can figure out which feelings should be trusted and which should be ignored.
This is just what the prefrontal cortex does when faced with a decision. If the emotional brain is the audience, constantly sending out visceral signals about its likes and dislikes, then the pre-frontal cortex is the smart executive, patiently monitoring emotional reactions and deciding which to take seriously. It is the only brain area able to realize that the initial dislike of
Seinfeld
was a reaction to its originality, not to its inherent funniness. The rational brain can't silence emotions, but it can help figure out which ones should be followed.
IN THE EARLY 1970S
, Walter Mischel invited four-year-olds to his Stanford psychology laboratory. The first question he asked each child was an easy one: did he like to eat marshmallows? The answer, not surprisingly, was always yes. Then Mischel made the child an offer. He could eat one marshmallow right away or, if the child was willing to wait for a few minutes while Mischel ran an errand, he could eat two marshmallows when the experimenter returned. Practically every child decided to wait. They all wanted more sweets.
Mischel then left the room but told the child that if he rang a bell, Mischel would come back and the child could eat the marshmallow. However, this meant that he'd be forfeiting the chance to get the second marshmallow.
Most of the four-year-olds couldn't resist the sugary temptation for more than a few minutes. Several kids covered their eyes with their hands so that they couldn't see the marshmallow. One child started kicking the desk. Another one started pulling on his hair. While a few of the four-year-olds were able to wait for up to fifteen minutes, many lasted less than one minute. Others just ate the marshmallow as soon as Mischel left the room, not even bothering to ring the bell.
The marshmallow was a test of self-control. The emotional brain is always tempted by rewarding stimuli, such as a lump of sugar. However, if the child wanted to achieve the goalâgetting a second marshmallowâthen he needed to temporarily ignore his feelings, delay gratification for a few more minutes. What Mischel discovered was that even at the age of four, some kids were much better at managing their emotions than others.
Fast-forward to 1985. The four-year-olds were now high school seniors. Mischel sent out a follow-up survey to their parents. He asked the parents about a wide variety of character traits, from the ability of their child to deal with frustrating events to whether or not the child was a conscientious student. Mischel also asked for SAT scores and high school transcripts. He used this data to construct an elaborate personality profile for each of the kids.
Mischel's results were very surprising, at least to him. There was a strong correlation between the behavior of the four-year-old waiting for a marshmallow and that child's future behavior as a young adult. The children who rang the bell within a minute were much more likely to have behavioral problems later on. They got worse grades and were more likely to do drugs. They struggled in stressful situations and had short tempers. Their SAT scores were, on average, 210 points lower than those of kids who'd waited several minutes before ringing the bell. In fact, the marshmallow test turned out to be a better predictor of SAT results than the IQ tests given to the four-year-olds.
The ability to wait for a second marshmallow reveals a crucial talent of the rational brain. When Mischel looked at why some four-year-olds were able to resist ringing the bell, he found that it wasn't because they wanted the marshmallow any less. These kids also loved sweets. Instead, Mischel discovered, the patient children were better at using reason to control their impulses. They were the kids who covered their eyes, or looked in the other direction, or managed to shift their attention to something other than the delicious marshmallow sitting right there. Rather than fixating on the sweet treat, they got up from the table and looked for something else to play with. It turned out that the same cognitive skills that allowed these kids to thwart temptation also allowed them to spend more time on their homework. In both situations, the prefrontal cortex was forced to exercise its cortical authority and inhibit the impulses that got in the way of the goal.
Studies of children with attention deficit hyperactivity disorder (ADHD) further demonstrate the connection between the prefrontal cortex and the ability to withstand emotional urges. Approximately 5 percent of school-age children are affected by ADHD, which manifests itself as an inability to focus, sit still, or delay immediate gratification. (These are the kids who eat their marshmallows right away.) As a result, kids with ADHD tend to perform significantly worse in school, since they struggle to stay on task. Minor disturbances become overwhelming distractions.
In November 2007, a team of researchers from the National Institute of Mental Health and McGill University announced that they had uncovered the specific deficits of the ADHD brain. The disorder turns out to be largely a developmental problem; often, the brains of kids with ADHD develop at a significantly slower pace than normal. This lag was most obvious in the pre-frontal cortex, which meant that these kids literally lacked the mental muscles needed to resist alluring stimuli. (On average, their frontal lobes were three and a half years behind schedule.) The good news, however, is that the brain almost always recovers from its slow start. By the end of adolescence, the frontal lobes in these kids reached normal size. It's not a coincidence that their behavioral problems began to disappear at about the same time. The children who had had the developmental lag were finally able to counter their urges and compulsions. They could look at the tempting marshmallow and decide that it was better to wait.
ADHD is an example of a problem in the developmental process, but the process itself is the same for everybody. The maturation of the human mind recapitulates its evolution, so the first parts of the brain to evolveâthe motor cortex and brain stemâare also the first parts to mature in children. Those areas are fully functional by the time humans hit puberty. In contrast, brain areas that are relatively recent biological inventionsâsuch as the frontal lobesâdon't finish growing until the teenage years are over. The prefrontal cortex is the last brain area to fully mature.
This developmental process holds the key to understanding the behavior of adolescents, who are much more likely than adults to engage in risky, impulsive behavior. More than 50 percent of U.S. high school students have experimented with illicit drugs. Half of all reported cases of sexually transmitted diseases occur in teenagers. Car accidents are the leading cause of death for those under the age of twenty-one. These bleak statistics are symptoms of minds that can't restrain themselves. While the emotional brains of teens are operating at full throttle (those raging hormones don't help), the mental muscles that check these emotions are still being built. A recent study by neuroscientists at Cornell, for example, demonstrated that the nucleus accumbens, a brain area associated with the processing of rewardsâthings like sex, drugs, and rock 'n' rollâwas significantly more active and mature in the adolescent brain than the prefrontal cortex was, that part of the brain that helps resist such temptations. Teens make bad decisions because they are literally less rational.
*
This new research on reckless adolescents and children with ADHD highlights the unique role of the prefrontal cortex. For too long, we've assumed that the purpose of reason is to eliminate those emotions that lead us astray. We've aspired to the Platonic model of rationality, in which the driver has complete control. But now we know that silencing human feelings isn't possible, at least not directly. Every teenager wants to have sex, and every four-year-old wants to eat marshmallows. Every firefighter who sees a wall of flames wants to run. Human emotions are built into the brain at a very basic level. They tend to ignore instructions.
But this doesn't mean that humans are mere puppets of the limbic system. Some people can see through the framing effect despite the fact that their amygdalas are activated. Some four-year-olds can find ways to wait for the second marshmallow. Thanks to the prefrontal cortex, we can transcend our impulses and figure out which feelings are useful and which ones should be ignored.
Consider the Stroop task, one of the classic experiments of twentieth-century psychology. Three wordsâ
blue, green,
and
red
âare flashed randomly on a computer screen. Each of the words is printed in a different color, but the colors aren't consistent. The word
red
might be in green, while
blue
is in red. The surprisingly difficult job of the subject is to ignore the
meaning
of the word and focus instead on the
color
of the word. If you're looking at
green,
but the word is actually in blue letters, then you have to touch the button marked
blue.
Why is this simple exercise so hard? Reading the word is an automated task; it takes little mental effort. Naming the color of the word, however, requires deliberate thought. The brain needs to turn off its automatic operationâthe act of reading a familiar wordâand consciously think about what color it sees. When a person performs the Stroop task in an fMRI machine, scientists can watch the brain struggle to ignore the obvious answer. The most important cortical area engaged in this tug of war is the prefrontal cortex, which allows a person to reject the first impression when it's possible that the first impression might be wrong. If the emotional brain is pointing you in the direction of a bad decision, you can choose to rely on your rational brain instead. You can use your prefrontal cortex to discount the amygdala, which is telling you to run up the steep slopes of the gulch. The reason Wag Dodge survived was not that he wasn't scared. Like all the smokejumpers, he was terrified. Dodge survived because he realized that his fright wasn't going to save him.
The ability to supervise itself, to exercise authority over its own decision-making process, is one of the most mysterious talents of the human brain. Such a mental maneuver is known as executive control, since thoughts are directed from the top down, like a CEO issuing orders. As the Stroop task demonstrates, this thought process depends on the prefrontal cortex.
But the questions still remain: How does the prefrontal cortex wield such power? What allows this particular area to control the rest of the brain? The answer returns us to the cellular details: by looking at the precise architecture of the prefrontal cortex, we can see the neural forms that explain its function.
Earl Miller is a neuroscientist at MIT who has devoted his career to understanding this bit of tissue. He was first drawn to the prefrontal cortex as a graduate student, in large part because it seemed to be connected to
everything.
"No other brain area gets so many different inputs or has so many different outputs," Miller says. "You name the brain area, and the prefrontal cortex is almost certainly linked to it." It took more than a decade of painstaking probing while Miller carefully monitored cells all across the monkey brain, but he was eventually able to show that the prefrontal cortex wasn't simply an aggregator of information. Instead, it was like the conductor of an orchestra, waving its baton and directing the musicians. In 2007, in a paper published in
Science,
Miller was able to provide the first glimpse of executive control at the level of individual neurons, as cells in the prefrontal cortex directly modulated the activity of cells throughout the brain. He was watching the conductor at work.
However, the prefrontal cortex isn't merely the bandleader of the brain, issuing one command after another. It's also uniquely versatile. While every other cortical region is precisely tuned for specific kinds of stimuliâthe visual cortex, for example, can deal only with visual informationâthe cells of the prefrontal cortex are extremely flexible. They can process whatever kind of data they're told to process. If someone is thinking about an unfamiliar math problem on a standardized test, then her prefrontal neurons are thinking about that problem. And when her attention shifts, and she starts to contemplate the next question on the test, these task-dependent cells seamlessly adjust their focus. The end result is that the prefrontal cortex lets her consciously analyze any type of problem from every possible angle. Instead of responding to the most obvious facts, or the facts that her emotions think are most important, she can concentrate on the facts that might help her come up with the right answer. We can all use executive control to get creative, to think about the same old problem in a new way. For instance, once Wag Dodge realized that he couldn't outrun the flames and that the fire would beat the smokejumpers to the top of the ridge, he needed to use his prefrontal cortex to come up with a new solution. The obvious response wasn't going to work. As Miller notes, "That Dodge guy had some high prefrontal function."
Consider the classic psychology puzzle known as the "candle problem." A subject is given a book of matches, some candles, and a cardboard box containing a few thumbtacks. The person is told to attach the candle to a piece of corkboard in such a way that it can burn properly. Most people initially attempt two common strategies, neither of which will work. The first strategy is to tack the candle directly to the board; this causes the candle wax to shatter. The next is to use the matches to melt the bottom of the candle and then try to stick the candle to the board; the wax does not hold, and the candle falls to the floor. At this point, most people give up. They tell the scientists that the puzzle is impossible; it's a stupid experiment and a waste of time. Less than 20 percent of people manage to come up with the correct solution, which is to attach the candle to the cardboard box and then tack the cardboard box to the board. Unless the subject has an insight about the boxâthat it can do more than hold thumbtacksâcandle after candle will be wasted. The subject repeats his failures while waiting for a breakthrough.