Read The Meaning of It All Online

Authors: Richard P. Feynman

The Meaning of It All (2 page)

So it is not a problem of technical know-how. Certainly not, because in the neighboring apartment buildings there are pipes, and there are pumps. We realize that now. Now we think it is a problem of economic assistance, and we do not know whether that really works or not. And the question of how much it costs to put a pipe and a pump to the top of each of the hills is not one that seems worth discussing, to me.

Although we do not know how to solve the problem, I would like to point out that we tried two things, technical know-how and economic assistance. We are
discouraged with them both, and we are trying something else. As you will see later, I find this encouraging. I think that to keep trying new solutions is the way to do everything.

Those, then, are the practical aspects of science, the new things that you can do. They are so obvious that we do not need to speak about them further.

The next aspect of science is its contents, the things that have been found out. This is the yield. This is the gold. This is the excitement, the pay you get for all the disciplined thinking and hard work. The work is not done for the sake of an application. It is done for the excitement of what is found out. Perhaps most of you know this. But to those of you who do not know it, it is almost impossible for me to convey in a lecture this important aspect, this exciting part, the real reason for science. And without understanding this you miss the whole point. You cannot understand science and its relation to anything else unless you understand and appreciate the great adventure of our time. You do not live in your time unless you understand that this is a tremendous adventure and a wild and exciting thing.

Do you think it is dull? It isn't. It is most difficult to convey, but perhaps I can give some idea of it. Let me start anywhere, with any idea.

For instance, the ancients believed that the earth was the back of an elephant that stood on a tortoise that swam in a bottomless sea. Of course, what held up the
sea was another question. They did not know the answer.

The belief of the ancients was the result of imagination. It was a poetic and beautiful idea. Look at the way we see it today. Is that a dull idea? The world is a spinning ball, and people are held on it on all sides, some of them upside down. And we turn like a spit in front of a great fire. We whirl around the sun. That is more romantic, more exciting. And what holds us? The force of gravitation, which is not only a thing of the earth but is the thing that makes the earth round in the first place, holds the sun together and keeps us running around the sun in our perpetual attempt to stay away. This gravity holds its sway not only on the stars but between the stars; it holds them in the great galaxies for miles and miles in all directions.

This universe has been described by many, but it just goes on, with its edge as unknown as the bottom of the bottomless sea of the other idea—just as mysterious, just as awe-inspiring, and just as incomplete as the poetic pictures that came before.

But see that the imagination of nature is far, far greater than the imagination of man. No one who did not have some inkling of this through observations could ever have imagined such a marvel as nature is.

Or the earth and time. Have you read anywhere, by any poet, anything about time that compares with real time, with the long, slow process of evolution? Nay,
I went too quickly. First, there was the earth without anything alive on it. For billions of years this ball was spinning with its sunsets and its waves and the sea and the noises, and there was no thing alive to appreciate it. Can you conceive, can you appreciate or fit into your ideas what can be the meaning of a world without a living thing on it? We are so used to looking at the world from the point of view of living things that we cannot understand what it means not to be alive, and yet most of the time the world had nothing alive on it. And in most places in the universe today there probably is nothing alive.

Or life itself. The internal machinery of life, the chemistry of the parts, is something beautiful. And it turns out that all life is interconnected with all other life. There is a part of chlorophyll, an important chemical in the oxygen processes in plants, that has a kind of square pattern; it is a rather pretty ring called a benzine ring. And far removed from the plants are animals like ourselves, and in our oxygen-containing systems, in the blood, the hemoglobin, there are the same interesting and peculiar square rings. There is iron in the center of them instead of magnesium, so they are not green but red, but they are the same rings.

The proteins of bacteria and the proteins of humans are the same. In fact it has recently been found that the protein-making machinery in the bacteria can be given orders from material from the red cells to produce red
cell proteins. So close is life to life. The universality of the deep chemistry of living things is indeed a fantastic and beautiful thing. And all the time we human beings have been too proud even to recognize our kinship with the animals.

Or there are the atoms. Beautiful—mile upon mile of one ball after another ball in some repeating pattern in a crystal. Things that look quiet and still, like a glass of water with a covered top that has been sitting for several days, are active all the time; the atoms are leaving the surface, bouncing around inside, and coming back. What looks still to our crude eyes is a wild and dynamic dance.

And, again, it has been discovered that all the world is made of the same atoms, that the stars are of the same stuff as ourselves. It then becomes a question of where our stuff came from. Not just where did life come from, or where did the earth come from, but where did the stuff of life and of the earth come from? It looks as if it was belched from some exploding star, much as some of the stars are exploding now. So this piece of dirt waits four and a half billion years and evolves and changes, and now a strange creature stands here with instruments and talks to the strange creatures in the audience. What a wonderful world!

Or take the physiology of human beings. It makes no difference what I talk about. If you look closely enough at anything, you will see that there is nothing
more exciting than the truth, the pay dirt of the scientist, discovered by his painstaking efforts.

In physiology you can think of pumping blood, the exciting movements of a girl jumping a jump rope. What goes on inside? The blood pumping, the interconnecting nerves—how quickly the influences of the muscle nerves feed right back to the brain to say, “Now we have touched the ground, now increase the tension so I do not hurt the heels.” And as the girl dances up and down, there is another set of muscles that is fed from another set of nerves that says, “One, two, three, O'Leary, one, two, . . .” And while she does that, perhaps she smiles at the professor of physiology who is watching her. That is involved, too!

And then electricity. The forces of attraction, of plus and minus, are so strong that in any normal substance all the plusses and minuses are carefully balanced out, everything pulled together with everything else. For a long time no one even noticed the phenomenon of electricity, except once in a while when they rubbed a piece of amber and it attracted a piece of paper. And yet today we find, by playing with these things, that we have a tremendous amount of machinery inside. Yet science is still not thoroughly appreciated.

To give an example, I read Faraday's
Chemical History of a Candle
, a set of six Christmas lectures for children. The point of Faraday's lectures was that no matter what you look at, if you look at it closely enough, you
are involved in the entire universe. And so he got, by looking at every feature of the candle, into combustion, chemistry, etc. But the introduction of the book, in describing Faraday's life and some of his discoveries, explained that he had discovered that the amount of electricity necessary to perform electrolysis of chemical substances is proportional to the number of atoms which are separated divided by the valence. It further explained that the principles he discovered are used today in chrome plating and the anodic coloring of aluminum, as well as in dozens of other industrial applications. I do not like that statement. Here is what Faraday said about his own discovery: “The atoms of matter are in some ways endowed or associated with electrical powers, to which they owe their most striking qualities, amongst them their mutual chemical affinity.” He had discovered that the thing that determined how the atoms went together, the thing that determined the combinations of iron and oxygen which make iron oxide, is that some of them are electrically plus and some of them are electrically minus, and they attract each other in definite proportions. He also discovered that electricity comes in units, in atoms. Both were important discoveries, but most exciting was that this was one of the most dramatic moments in the history of science, one of those rare moments when two great fields come together and are unified. He suddenly found that two apparently different things were different aspects of the
same thing. Electricity was being studied, and chemistry was being studied. Suddenly they were two aspects of the same thing—chemical changes with the results of electrical forces. And they are still understood that way. So to say merely
that the principles are used in chrome plating is inexcusable.

And the newspapers, as you know, have a standard line for every discovery made in physiology today: “The discoverer said that the discovery may have uses in the cure of cancer.” But they cannot explain the value of the thing itself.

Trying to understand the way nature works involves a most terrible test of human reasoning ability. It involves subtle trickery, beautiful tightropes of logic on which one has to walk in order not to make a mistake in predicting what will happen. The quantum mechanical and the relativity ideas are examples of this.

The third aspect of my subject is that of science as a method of finding things out. This method is based on the principle that observation is the judge of whether something is so or not. All other aspects and characteristics of science can be understood directly when we understand that observation is the ultimate and final judge of the truth of an idea. But “prove” used in this way really means “test,” in the same way that a hundred-proof alcohol is a test of the alcohol, and for people today the idea really should be translated as, “The exception
tests
the rule.” Or, put another way, “The exception proves that the rule is wrong.” That is the principle of science. If there is an exception to any rule, and if it can be proved by observation, that rule is wrong.

The exceptions to any rule are most interesting in themselves, for they show us that the old rule is wrong. And it is most exciting, then, to find out what the right rule, if any, is. The exception is studied, along with other conditions that produce similar effects. The scientist tries to find more exceptions and to determine the characteristics of the exceptions, a process that is continually exciting as it develops. He does not try to avoid showing that the rules are wrong; there is progress and excitement in the exact opposite. He tries to prove himself wrong as quickly as possible.

The principle that observation is the judge imposes a severe limitation to the kind of questions that can be answered. They are limited to questions that you can put this way: “If I do this, what will happen?” There are ways to try it and see. Questions like, “Should I do this?” and “What is the value of this?” are not of the same kind.

But if a thing is not scientific, if it cannot be subjected to the test of observation, this does not mean that it is dead, or wrong, or stupid. We are not trying to argue that science is somehow good and other things are somehow not good. Scientists take all those things that
can
be analyzed by observation, and thus the things called science are found out. But there are some things left out, for which the method does not work. This does not mean that
those things are unimportant. They are, in fact, in many ways the most important. In any decision for action, when you have to make up your mind what to do, there is always a “should” involved, and this cannot be worked out from “If I do this, what will happen?” alone. You say, “Sure, you see what will happen, and then you decide whether you want it to happen or not.” But that is the step the scientist cannot take. You can figure out what is going to happen, but then you have to decide whether you like it that way or not.

There are in science a number of technical consequences that follow from the principle of observation as judge. For example, the observation cannot be rough. You have to be very careful. There may have been a piece of dirt in the apparatus that made the color change; it was not what you thought. You have to check the observations very carefully, and then recheck them, to be sure that you understand what all the conditions are and that you did not misinterpret what you did.

It is interesting that this thoroughness, which is a virtue, is often misunderstood. When someone says a thing has been done scientifically, often all he means is that it has been done thoroughly. I have heard people talk of the “scientific” extermination of the Jews in Germany. There was nothing scientific about it. It was only thorough. There was no question of making observations and then checking them in order to determine something. In that sense, there were “scientific” exterminations of people
in Roman times and in other periods when science was not so far developed as it is today and not much attention was paid to observation. In such cases, people should say “thorough” or “thoroughgoing,” instead of “scientific.”

There are a number of special techniques associated with the game of making observations, and much of what is called the philosophy of science is concerned with a discussion of these techniques. The interpretation of a result is an example. To take a trivial instance, there is a famous joke about a man who complains to a friend of a mysterious phenomenon. The white horses on his farm eat more than the black horses. He worries about this and cannot understand it, until his friend suggests that maybe he has more white horses than black ones.

Other books

Dangerous Pride by Cameron, Eve
Frozen Stiff by Mary Logue
Veiled by Silvina Niccum
Scandal in the Night by Elizabeth Essex
From Whence You Came by Gilman, Laura Anne
Irreplaceable by Angela Graham


readsbookonline.com Copyright 2016 - 2024